【題目】甲乙兩地相距200km快車速度為120 ,慢車速度為80 ,慢車從甲地出發(fā),快車從乙地出發(fā),
(1)如果兩車同時(shí)出發(fā),相向而行,出發(fā)后幾時(shí)兩車相遇?相遇時(shí)離甲地多遠(yuǎn)?
(2)如果兩車同時(shí)出發(fā),同向(從乙開(kāi)始向甲方向)而行,出發(fā)后幾時(shí)兩車相遇?

【答案】
(1)解:設(shè)x小時(shí)后兩車相遇,則
由題意,120x+80x=200,
解之,得x=1 ,
故1小時(shí)后兩車相遇,相遇時(shí)離甲地80 km
(2)解:設(shè)y 小時(shí)后兩車相遇,則
由題意,120y-80y=200,
解之,得y=5 ,
故5小時(shí)后兩車相遇
【解析】(1)這是一道相遇問(wèn)題,設(shè)x小時(shí)后兩車相遇 ,根據(jù)相遇的時(shí)候,快車所行的路程+慢車所行的路程=甲乙兩地的距離 ,列出方程求解即可;
(2)這是一道追及問(wèn)題,設(shè)y 小時(shí)后兩車相遇 ,根據(jù)相遇的時(shí)候,快車所行的路程-慢車所行的路程=甲乙兩地的距離 ,列出方程求解即可 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AOB與其內(nèi)部任意一點(diǎn)P,若過(guò)點(diǎn)P畫一條直線與OA平行,那么這樣的直線( )

A、有且只有一條 B、有兩條 C、有無(wú)數(shù)條 D、不存在

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不屬于中心對(duì)稱圖形的是(  )

A.長(zhǎng)方形B.平行四邊形

C.等腰直角三角形D.線段

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于菱形的性質(zhì),下列敘述不正確的是( 。

A.菱形的四條邊都相等B.菱形的四個(gè)角都相等

C.菱形的對(duì)角線互相垂直D.菱形的對(duì)角線互相平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上原點(diǎn)右側(cè)的離原點(diǎn)越遠(yuǎn)的點(diǎn)表示的數(shù)越。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.

(1)請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

(2)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問(wèn)中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予說(shuō)明;

(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問(wèn)中的結(jié)論都能成立嗎?請(qǐng)直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2a﹣3b2=5,則10﹣2a+3b2的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個(gè)問(wèn)題:如圖1,△ABC中,AB=AC,點(diǎn)D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.

小明經(jīng)探究發(fā)現(xiàn),過(guò)點(diǎn)A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問(wèn)題得到解決.

(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個(gè))

參考小明思考問(wèn)題的方法,解答下列問(wèn)題:

(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點(diǎn),E為DC的中點(diǎn),點(diǎn)F在AC的延長(zhǎng)線上,且∠CDF=∠EAC,若CF=2,求AB的長(zhǎng);

(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點(diǎn)D、E分別在AB、AC邊上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案