【題目】如圖,二次函數(shù)y=x2﹣6x+5的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,連接BC.

(1)直接寫(xiě)出點(diǎn)B、C的坐標(biāo),B  ;C  

(2)點(diǎn)P是y軸右側(cè)拋物線上的一點(diǎn),連接PB、PC.若△PBC的面積15,求點(diǎn)P的坐標(biāo).

(3)設(shè)E為線段BC上一點(diǎn)(不含端點(diǎn)),連接AE,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段EC以每秒2個(gè)單位的速度運(yùn)動(dòng)到C后停止,當(dāng)點(diǎn)E的坐標(biāo)是  時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少,最少用時(shí)是  秒.

(4)若點(diǎn)Q在y軸上,當(dāng)∠AQB取得最大值時(shí),直接寫(xiě)出點(diǎn)Q的坐標(biāo)  

【答案】(1)(0,5);(5,0);(2)P點(diǎn)坐標(biāo)為:(2,﹣3 )、(3,﹣4 )、(﹣1,10 )或(6,5 );(3)(4, ),(2+1);(4)(3,).

【解析】

1)將x=0y=0分別代入y=x2﹣6x+5,即可求得B、C的坐標(biāo);(2)設(shè)x軸上點(diǎn)D,使得DBC的面積15,求出BD的長(zhǎng),再求直線BC的解析式,得到D點(diǎn)坐標(biāo)為(﹣1,0)或(11,0),分類討論D坐標(biāo)為(﹣1,0)與(11,0)的情況,根據(jù)過(guò)點(diǎn)D平行于BC的直線l與拋物線交點(diǎn)為滿足條件的P求出所有滿足條件的P點(diǎn)的坐標(biāo);(3)由已知,當(dāng)AE最短時(shí),M用時(shí)最少,當(dāng)AEBC于點(diǎn)E時(shí),AE最短,根據(jù)三角函數(shù)求得AEEB的長(zhǎng),進(jìn)而求出E點(diǎn)的坐標(biāo)以及M點(diǎn)運(yùn)動(dòng)的最少時(shí)間;(4)以AB邊為弦作圓,圓心Fx軸上方,當(dāng)圓半徑越大,x軸上方的點(diǎn)與AB兩點(diǎn)連線夾角越大

當(dāng)圓Fy軸切于點(diǎn)Q時(shí),∠AQB取得最大值,如圖,連FA、FB、FQ,作FHAB于點(diǎn)H,求出QFFH的長(zhǎng),即可求得點(diǎn)Q坐標(biāo).

解:(1)當(dāng)x=0時(shí),y=5

當(dāng)y=0時(shí), x2﹣6x+5=0

解得

x1=1,x2=5

故答案為:(0,5);(5,0)

(2)設(shè)x軸上點(diǎn)D,使得DBC的面積15.

BDOC=15,

解得BD=6

C(0,5);B(5,0)

則可求直線BC解析式為:y=﹣x+5x

故點(diǎn)D坐標(biāo)為(﹣1,0)或(11,0)

當(dāng)D坐標(biāo)為(﹣1,0)時(shí),過(guò)點(diǎn)D平行于BC的直線l與拋物線交點(diǎn)為滿足條件的P

則可求得直線l的解析式為:y=﹣x-

求直線l與拋物線交點(diǎn)得:

x2﹣6x+5=﹣x-

解得

x1=2,x2=3

P點(diǎn)坐標(biāo)為(2,﹣3)或(3,﹣4

同理當(dāng)點(diǎn)D坐標(biāo)為(11,0)時(shí),直線l的解析式為y=﹣x+11

求直線l與拋物線交點(diǎn)得:

x2﹣6x+5=﹣x+11

解得

x1=﹣1,x2=6

則點(diǎn)P坐標(biāo)為(﹣1,10),(6,5

綜上滿足條件P點(diǎn)坐標(biāo)為:(2,﹣3)、(3,﹣4)、(﹣1,10)或(6,5

(3)由已知,當(dāng)AE最短時(shí),M用時(shí)最少

AEBC于點(diǎn)E,由已知,∠ABC=60°,AB=4

AE=2,EB=2

∴點(diǎn)E坐標(biāo)為(4,),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少為(2+1)秒

故答案為:(4,),(2+1)

(4)以AB邊為弦作圓,圓心Fx軸上方,當(dāng)圓半徑越大,x軸上方的點(diǎn)與AB兩點(diǎn)連線夾角越大

當(dāng)圓Fy軸切于點(diǎn)Q時(shí),∠AQB取得最大值.

如圖:連FA、FB、FQ,作FHAB于點(diǎn)H

則可知AH=2

QF=OH=3

FH=

∴點(diǎn)Q坐標(biāo)為(3,

故答案為:(3,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點(diǎn)A為切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)DAP的中點(diǎn),連結(jié)CD.

(1)求證:CD是⊙O的切線;

(2)若AB=2,P=30°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人用如圖所示的兩個(gè)分格均勻的轉(zhuǎn)盤做游戲:分別轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,若轉(zhuǎn)盤停止后,指針指向一個(gè)數(shù)字(若指針恰好停在分格線上,則重轉(zhuǎn)一次),用所指的兩個(gè)數(shù)字作乘積,如果積大于10,那么甲獲勝;如果積不大于10,那么乙獲勝.清你解決下列問(wèn)題:

l)利用樹(shù)狀圖(或列表)的方法表示游戲所有可能出現(xiàn)的結(jié)果;

2)求甲、乙兩人獲勝的概率,并說(shuō)明游戲是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組要測(cè)量一棟五層居民樓CD的高度,該樓底層為車庫(kù),高2.5米;上面五層居住,每層高度相等,測(cè)角儀支架離地1.5米,在A處測(cè)得五樓頂部點(diǎn)D的仰角為60°,在B處測(cè)得四樓頂部點(diǎn)E的仰角為30°,AB=14米,求居民樓的高度.(精確到0.1米,參考數(shù)據(jù):≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,ABC為等腰直角三角形, ABD為等邊三角形,連接CD.

1)求∠ACD的度數(shù);

2)如圖①,作∠BAC的平分線交CD于點(diǎn)E,求證:DE=AE+CE;

3)如圖②,在(2)的條件下,M為線段BC右側(cè)一點(diǎn),滿足∠CMB=60°,求證:ME平分∠CMB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣4,0)、B(0,3),對(duì)AOB連續(xù)作旋轉(zhuǎn)變換依次得到三角形(1)、(2)、(3)、(4)、…,則第(5)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是_____,第(2018)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩個(gè)港口,水由A流向B,水流的速度是4千米/小時(shí),甲、乙兩船同時(shí)由A順流駛向B,各自不停地在A、B之間往返航行,甲在靜水中的速度是28千米/小時(shí),乙在靜水中的速度是20千米/小時(shí).

設(shè)甲行駛的時(shí)間為t小時(shí),甲船距B港口的距離為S1千米,乙船距B港口的距離為S2千米,如圖為S1(千米)和t(小時(shí))函數(shù)關(guān)系的部分圖象

(1)A、B兩港口距離是_____千米.

(2)在圖中畫(huà)出乙船從出發(fā)到第一次返回A港口這段時(shí)間內(nèi),S2(千米)和t(小時(shí))的函數(shù)關(guān)系的圖象

(3)求甲、乙兩船第二次(不算開(kāi)始時(shí)甲、乙在A處的那一次)相遇點(diǎn)M位于A、B港口的什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,等邊三角形ABC的邊長(zhǎng)為5,點(diǎn)P在線段AB上,點(diǎn)D在線段BC上,且△PDE是等邊三角形.

(1)初步嘗試:若點(diǎn)P與點(diǎn)A重合時(shí)(如圖1),BD+BE=   

(2)類比探究:將點(diǎn)P沿AB方向移動(dòng),使AP=1,其余條件不變(如圖2),試計(jì)算BD+BE的值是多少?

(3)拓展遷移:如圖3,在△ABC中,AB=AC,∠BAC=70°,點(diǎn)P在線段AB的延長(zhǎng)線上,點(diǎn)D在線段CB的延長(zhǎng)線上,在△PDE中,PD=PE,∠DPE=70°,設(shè)BP=a,請(qǐng)直接寫(xiě)出線段BD、BE之間的數(shù)量關(guān)系(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無(wú)滑動(dòng)滾動(dòng),每旋轉(zhuǎn)60°為滾動(dòng)1次,那么當(dāng)正六邊形ABCDEF滾動(dòng)2017次時(shí),點(diǎn)F的坐標(biāo)是(  )

A. (2017,0) B. (2017, C. (2018, D. (2018,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案