【題目】已知,等邊三角形ABC的邊長為5,點P在線段AB上,點D在線段BC上,且△PDE是等邊三角形.

(1)初步嘗試:若點P與點A重合時(如圖1),BD+BE=   

(2)類比探究:將點P沿AB方向移動,使AP=1,其余條件不變(如圖2),試計算BD+BE的值是多少?

(3)拓展遷移:如圖3,在△ABC中,AB=AC,∠BAC=70°,點P在線段AB的延長線上,點D在線段CB的延長線上,在△PDE中,PD=PE,∠DPE=70°,設(shè)BP=a,請直接寫出線段BD、BE之間的數(shù)量關(guān)系(用含a的式子表示)

【答案】(1)5;(2)4;(3)BD﹣BE =2acos55°.

【解析】試題分析:(1)先判斷出∠BPE=∠CAD,進而判斷出△PBE≌△ACD,即可得出BD+BE=BC=5;
(2)先構(gòu)造出等邊三角形,再判斷出∠BPE=∠FPD,進而判斷出△PBE≌△PFD,即可得出BD+BE=BF=4;
(3)類似于(2)的方法判斷出△PBE≌△PFD得出BE=DF,再判斷出BF=2BG,利用用銳角三角函數(shù)求出BG=acos55°,即可BD-BE=BF=2acos55°.

試題解析:解:(1)∵△ABC和△PDE是等邊三角形,

∴PE=PD,AB=AC,∠DPE=∠CAB=60°,

∴∠BPE=∠CAD,

∴△PBE≌△ACD,

∴BE=CD,

∴BD+BE=BD+CD=BC=5,

故答案為5;

(2)如圖2,過點PPF∥ACBCF,

∴△FPB是等邊三角形,

∴BF=PF=PB=AB﹣AP=4,∠BPF=60°,

∵△PDE是等邊三角形,

∴PD=PE,∠DPE=60°,

∴∠BPE=∠FPD,

∴△PBE≌△PFD,

∴BE=DF,

∴BD+BE=BD+DF=BF=4;

(3)如圖3,

過點PPF∥ACBCF,

∴∠BPF=∠BAC=70°,∠PFB=∠C,

∵AB=AC,∠BAC=70°,

∴∠ABC=∠C=55°,

∴∠PFB=∠C=∠PBF=55°,

∴PF=PB=a,

∵∠BPF=∠DPE=70°,

∴∠DPF=∠EPB,

∵PD=PE,

∴△PBE≌△PFD,

∴BE=DF,

過點PPG⊥BCG,

∴BF=2BG,

Rt△BPG中,∠PBD=55°,

∴BG=BPcos∠PBD=acos55°,

∴BF=2BG=2acos55°,

∴BD﹣BE=BD﹣DF=BF=2acos55°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系,O為坐標原點,點A(﹣2,0),點B0,2).

1)直接寫求∠BAO的度數(shù);

2)如圖1,將AOB繞點O順時針得AOB,當A恰好落在AB邊上時,設(shè)ABO的面積為S1,BAO的面積為S2,S1S2有何關(guān)系?為什么?

3)若將AOB繞點O順時針旋轉(zhuǎn)到如圖2所示的位置,S1S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=x2﹣6x+5的圖象交x軸于A、B兩點,交y軸于點C,連接BC.

(1)直接寫出點B、C的坐標,B  ;C  

(2)點P是y軸右側(cè)拋物線上的一點,連接PB、PC.若△PBC的面積15,求點P的坐標.

(3)設(shè)E為線段BC上一點(不含端點),連接AE,一動點M從點A出發(fā),沿線段AE以每秒一個單位速度運動到E點,再沿線段EC以每秒2個單位的速度運動到C后停止,當點E的坐標是  時,點M在整個運動中用時最少,最少用時是  秒.

(4)若點Q在y軸上,當∠AQB取得最大值時,直接寫出點Q的坐標  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以AB中點E為圓心,EA為半徑畫弧交CD于點F,點F恰好為CD中點,若∠B=60°,BC=2,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在世界經(jīng)濟的影響下,國家采取擴大內(nèi)需的政策,基建投資成為拉動內(nèi)需最強有力的引擎,金強公司中標一項工程,在甲、乙兩地施工,其中甲地需推土機30臺,乙地需推土機26臺,公司在A、B兩地分別庫存推土機32臺和24臺,現(xiàn)從A地運一臺到甲、乙兩地的費用分別是400元和300元.從B地運一臺到甲、乙兩地的費用分別為200元和500元,設(shè)從A地運往甲地x臺推土機,運這批推土機的總費用為y元.

1)根據(jù)題意,可將庫存地和施工地之間推土機的運輸數(shù)量列表如下:

甲地(臺)

乙地(臺)

合計

A

x

A地庫存:32 ()

B

B地庫存:24 ()

合計

甲地需求:30 ()

乙地需求:26 ()

總計:56 ()

2)求yx的函數(shù)關(guān)系式;

3)當x取何值時,能使運送這批推土機的總費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校進行校園美化工程招標時,有甲、乙兩個工程隊投標,經(jīng)測算:甲隊單獨完成這項工程需要60天,如果由甲隊先做20天,剩下的工程由甲、乙合作24天完成.

1)乙隊單獨完成這項工程需要多少天?

2)甲隊施工一天,需要支付工程款3.5萬元,乙隊施工一天需要支付工程款2萬元:如果規(guī)定在70天內(nèi)完成這項工作,是由甲、乙兩隊單獨完成省錢?還是由甲乙合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,以O(shè)為圓心,OA為半徑的圓交AB于D,延長AO交O于E,連接CD,CE,若CE是O的切線,解答下列問題:

(1)求證:CD是O的切線;

(2)若BC=3,CD=4,求平行四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學生書寫漢字的能力,增強保護漢字的意識,我市舉辦了首屆漢字聽寫大賽,經(jīng)選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x

頻數(shù)(人數(shù))

1

25≤x<30

4

2

30≤x<35

8

3

35≤x<40

16

4

40≤x<45

a

5

45≤x<50

10

請結(jié)合圖表完成下列各題:

(1)求表中a的值;

(2)請把頻數(shù)分布直方圖補充完整;

(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

(4)第510名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小宇與小強兩名男同學能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形紙片ABCD中,AB10AD8,將紙片折疊,使點B落在CD上的B處,折痕為AE,在折痕AE上存在一點P到邊CD的距離與到點B的距離相等,則此相等的距離為_____

查看答案和解析>>

同步練習冊答案