【題目】下列圖案中是中心對稱圖形但不是軸對稱圖形的是( )
A.
B.
C.
D.

【答案】C
【解析】解:A、∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;

B、∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項錯誤;

C、此圖形旋轉(zhuǎn)180°后能與原圖形重合,此圖形是中心對稱圖形,但不是軸對稱圖形,故此選項正確;

D、∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,也不是軸對稱圖形,故此選項錯誤.

故選:C.

【考點精析】通過靈活運用軸對稱圖形和中心對稱及中心對稱圖形,掌握兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知a+b0,b0,則下列結(jié)論:ab0;|a||b|ab0bab+a,正確的是( 。

A. ①②B. ②③C. ③④D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)A=(x﹣3)(x﹣7),B=(x﹣2)(x﹣8),則A、B的大小關(guān)系為(
A.A>B
B.A<B
C.A=B
D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:x3﹣4xy2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解我市市直20000名初中生的身高情況,從中抽取了2000名學生測量身高,在這個問題中,樣本容量是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且pq),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=

例如12可以分解成1×12,2×6或3×4,因為12﹣16﹣24﹣3,所以3×4是12的最佳分解,所以F(12)=

(1)如果一個正整數(shù)m是另外一個正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).

求證:對任意一個完全平方數(shù)m,總有F(m)=1;

(2)如果一個兩位正整數(shù)t,t=10x+y(1xy9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”;

(3)在(2)所得“吉祥數(shù)”中,求F(t)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某小區(qū)家庭用電情況,小明隨機調(diào)查了該小區(qū)n戶家庭2017年4月的用電量(用電量的數(shù)據(jù)都是整數(shù)),并將所得整數(shù)繪制成頻數(shù)分布直方圖如圖①所示.
(1)求n的值,
(2)小明將所得數(shù)據(jù)按每戶用電量x(度)大小分為三檔,①低檔:121≤x≤160,②中檔:161≤x≤200,③高檔:201≤x≤240,并繪制成扇形統(tǒng)計圖如圖②所示,請幫助他將扇形統(tǒng)計圖補充完整.
(3)該地區(qū)對居民用電實行“階梯收費”,規(guī)定:用電量不超過200度按第一階梯電價收費,超過200度的部分按第二階梯電價收費,根據(jù)以上調(diào)查結(jié)果,估計2017年4月該小區(qū)300戶家庭僅按第一階梯電價收費額戶數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解.

(1)ax2-2axy+ay2 (2)(2x+y)2﹣(x+2y)2

查看答案和解析>>

同步練習冊答案