【題目】(1)(x+1)2-3=0; (2)2x2-3=5x;

(3)3x2-6x+2=0 ; (4)9(x-2)2-4x2=0.

【答案】(1);(2);(3);(4).

【解析】

(1)先變形得到(x+1)2=3,再利用平方根的定義得到x+1=±,然后解兩個一次方程即可;

2)分解因式,即可得出兩個一元一次方程,求出方程的解即可;

3)將原方程兩邊同時除以3,然后利用配方法即可得到結(jié)果;

4)先移項(xiàng),再分解因式,即可得出兩個一元一次方程,求出方程的解即可.

解:(1(x+1)2-3=0

x+1=±

x=±-1

x=-1,x=--1;

22x2-3=5x

(2x+1)(x-2)=0

2x+1=0,x-2=0,

x=-,x=3;

33x2-6x+2=0

,

(x-1)=

x=1+,x=1-

49(x-2)2-4x2=0

(5x-6)(x-6)=0

x=,x=6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=BC,點(diǎn)OAB上,經(jīng)過點(diǎn)A的⊙OBC相切于點(diǎn)D,交AB于點(diǎn)E

1)求證:AD平分∠BAC

2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).

(1)求證無論k為何值,方程總有兩個不相等實(shí)數(shù)根;

(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;

(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個方面進(jìn)行量化考核.甲、乙、丙各項(xiàng)得分如下表:

85

80

75

80

90

73

83

79

90

(1)根據(jù)三項(xiàng)得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.

(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分(不計其他因素條件),請你說明誰將被錄用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A、B、C分別是⊙O上不重合的三點(diǎn),連接AC、BC.

(1)如圖2,點(diǎn)P是直線AB上方且在⊙O外的任意一點(diǎn), 連接AP、BP.試比較∠APB與∠ACB的大小關(guān)系,并說明理由;

(2) 若點(diǎn)P是⊙O內(nèi)任意一點(diǎn), 連接AP、BP,比較∠APB與∠ACB大小關(guān)系;

(3)如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A與點(diǎn)B的坐標(biāo)分別是(1,0),(5,0),點(diǎn)P是直線y=-x上一動點(diǎn),當(dāng)∠APB取得最大值時,直接寫出點(diǎn)P的坐標(biāo),并簡要說明點(diǎn)P的位置是如何確定的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知k為實(shí)數(shù),關(guān)于x的方程為x2﹣2(k+1)x+k2=0.

(1)請判斷x=﹣1是否可為此方程的根,說明理由.

(2)設(shè)方程的兩實(shí)根為x1,x2,當(dāng)2x1+2x2+1=x1x2時,試求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,點(diǎn)D是⊙O 上一點(diǎn),⊙O的切線CBAD的延長線交于點(diǎn)B,點(diǎn)F是直徑AC上一點(diǎn),連接DF并延長交⊙O于點(diǎn)E,連接AE.

(1)求證:∠ABC=AED;

(2)連接BF,若AD=,AF=6,tanAED=,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(類比概念)三角形的內(nèi)切圓是以三個內(nèi)角的平分線的交點(diǎn)為圓心,以這點(diǎn)到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形

(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對邊AB,CDBC,AD之間的數(shù)量關(guān)系

猜想結(jié)論:   (要求用文字語言敘述)

寫出證明過程(利用圖1,寫出已知、求證、證明)

(性質(zhì)應(yīng)用)

①初中學(xué)過的下列四邊形中哪些是圓外切四邊形   (填序號)

A:平行四邊形:B:菱形:C:矩形;D:正方形

②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長是   

③圓外切四邊形的周長為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長.

查看答案和解析>>

同步練習(xí)冊答案