【題目】如圖,DE是⊙O的直徑,過點(diǎn)D作⊙O的切線AD,C是AD的中點(diǎn),AE交⊙O于點(diǎn)B,且四邊形BCOE是平行四邊形。
(1)BC是⊙O的切線嗎?若是,給出證明:若不是,請(qǐng)說明理由;
(2)若⊙O半徑為1,求AD的長。
【答案】(1)是切線, 證明見解析;(2)2
【解析】試題分析:(1)連接OB,由BC與OD平行,BC=OD,得到四邊形BCDO為平行四邊形,由AD為圓的切線,利用切線的性質(zhì)得到OD垂直于AD,可得出四邊形BCDO為矩形,利用矩形的性質(zhì)得到OB垂直于BC,即可得出BC為圓O的切線.
(2)連接BD,由ED為圓O的直徑,利用直徑所對(duì)的圓周角為直角得到∠DBE為直角,由BCOE為平行四邊形,得到BC與OE平行,且BC=OE=1,在直角三角形ABD中,C為AD的中點(diǎn),利用斜邊上的中線等于斜邊的一半求出AD的長即可.
試題解析:解:(1)是.理由如下:
如圖,連接OB.∵BC∥OD,BC=OD,∴四邊形BCDO為平行四邊形.∵AD為圓O的切線,∴OD⊥AD,∴四邊形BCDO為矩形,∴OB⊥BC,則BC為圓O的切線.
(2)連接BD.∵DE是直徑,∴∠DBE=90°.∵四邊形BCOE為平行四邊形,∴BC∥OE,BC=OE=1.在Rt△ABD中,C為AD的中點(diǎn),∴BC=AD=1,則AD=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).
(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動(dòng),同時(shí)點(diǎn)F在邊CB上自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理;
(2)如圖2,當(dāng)E,F分別在邊CD,BC的延長線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時(shí)CE:CD的值;
(3)如圖3,當(dāng)E,F分別在直線DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+6x+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=x﹣5經(jīng)過點(diǎn)B,C.
(1)求拋物線的解析式;
(2)過點(diǎn)A的直線交直線BC于點(diǎn)M.
①當(dāng)AM⊥BC時(shí),過拋物線上一動(dòng)點(diǎn)P(不與點(diǎn)B,C重合),作直線AM的平行線交直線BC于點(diǎn)Q,若以點(diǎn)A,M,P,Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的橫坐標(biāo);
②連接AC,當(dāng)直線AM與直線BC的夾角等于∠ACB的2倍時(shí),請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動(dòng)適應(yīng)社會(huì),促進(jìn)書本知識(shí)和生活經(jīng)驗(yàn)的深度融合,我市某中學(xué)決定組織部分班級(jí)去赤壁開展研學(xué)旅行活動(dòng),在參加此次活動(dòng)的師生中,若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表所示.
甲種客車 | 乙種客車 | |
載客量/(人/輛) | 30 | 42 |
租金/(元/輛) | 300 | 400 |
學(xué)校計(jì)劃此次研學(xué)旅行活動(dòng)的租車總費(fèi)用不超過3100元,為了安全,每輛客車上至少要有2名老師.
(1)參加此次研學(xué)旅行活動(dòng)的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,可知租用客車總數(shù)為 輛;
(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象與x軸交于A,B兩點(diǎn),對(duì)稱軸為直線x=2,下列結(jié)論:①abc>0; ②4a+b=0;③若點(diǎn)A坐標(biāo)為(1,0),則線段AB=5; ④若點(diǎn)M(x1,y1)、N(x2,y2)在該函數(shù)圖象上,且滿足0<x1<1,2<x2<3,則y1<y2其中正確結(jié)論的序號(hào)為( )
A. ①,② B. ②,③ C. ③,④ D. ②,④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD為等邊三角形,點(diǎn)E為△BCD圍成的區(qū)域(包括各邊)內(nèi)的一點(diǎn),過點(diǎn)E作EM∥AB,交直線AC于點(diǎn)M,作EN∥AC,交直線AB于點(diǎn)N,則的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點(diǎn),D、E分別在BC、AC邊上.
(1)如圖1,F(xiàn)是線段AD上的一點(diǎn),連接CF,若AF=CF;
①求證:點(diǎn)F是AD的中點(diǎn);
②判斷BE與CF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)如圖2,把△DEC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(0<α<90°),點(diǎn)F是AD的中點(diǎn),其他條件不變,判斷BE與CF的關(guān)系是否不變?若不變,請(qǐng)說明理由;若要變,請(qǐng)求出相應(yīng)的正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c,則滿足下列條件的一定是直角三角形的是( )
A. ∠A:∠B:∠C=3:4:5B. a:b:c=1::3
C. a=7,b=24,c=25D. a=32,b=42,c=52
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)A,B,點(diǎn)B的橫坐標(biāo)是4.點(diǎn)P是第一象限內(nèi)反比例函數(shù)圖象上的動(dòng)點(diǎn),且在直線AB的上方.
(1)求k的值;
(2)設(shè)直線PA,PB與x軸分別交于點(diǎn)M,N,求證:△PMN是等腰三角形;
(3)設(shè)點(diǎn)Q是反比例函數(shù)圖象上位于P,B之間的動(dòng)點(diǎn)(與點(diǎn)P,B不重合),連接AQ,BQ,比較∠PAQ與∠PBQ的大小,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com