【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點AB,點B的橫坐標(biāo)是4.點P是第一象限內(nèi)反比例函數(shù)圖象上的動點,且在直線AB的上方.

(1)k的值;

(2)設(shè)直線PA,PBx軸分別交于點M,N,求證:△PMN是等腰三角形;

(3)設(shè)點Q是反比例函數(shù)圖象上位于PB之間的動點(與點P,B不重合),連接AQ,BQ,比較∠PAQ與∠PBQ的大小,并說明理由.

【答案】(1)k=4;(2)△PMN是等腰三角形;(3)∠PAQ=∠PBQ,理由見解析.

【解析】

(1)由題意將點B的橫坐標(biāo)代入一次函數(shù)中解得對應(yīng)的y的值可得點B的坐標(biāo),把所得點B的坐標(biāo)代入中即可解得k的值;

(2)如圖2,過點PPH⊥x軸于H,k的值得到反比例函數(shù)的解析式,由所得反比例函數(shù)的解析式和一次函數(shù)的解析式可求得點A、B的坐標(biāo),這樣設(shè)點P的坐標(biāo)為,由此解得直線PA、PB的解析式,即可求得用含m的代數(shù)式表達(dá)的點MN的坐標(biāo),從而可求得用m的代數(shù)式表達(dá)的MHNH的長度,得到MH=NH,即可得到PH是線段MN的垂直平分線,從而可得PM=PN,由此即可得到△PMN是等腰三角形;

(3)如圖3,設(shè)QAx軸相交于點C,QBx軸相交于點D,則和(2)同理可得QC=QD,由此可得∠QCD=∠QDC,由(2)中所得的PM=PN可得∠PMN=∠PNM,這樣結(jié)合對頂角相等和三角形外角的性質(zhì)即可證得∠PAQ=∠PBQ.

(1)把x=4代入可得y=1,

到點B的坐標(biāo)為(4,1),

把點B(4,1)代入,得k=4;

(2)過點PPH⊥x軸于H,如圖2.

(1)可知反比例函數(shù)解析式為,

解得: ,

A的坐標(biāo)為(-4,-1),點B的坐標(biāo)為(4,1),

P的圖象上,

設(shè)P的坐標(biāo)為,直線PA的方程為y=ax+b,直線PB的方程為y=px+q,

把點A、B、P的坐標(biāo)代入所設(shè)解析式可得:

由此解得直線PA的解析式為,直線PB的解析式為,

由此可得:M的坐標(biāo)為(m-4,0),N的坐標(biāo)為(m+4,0),

∴H(m,0),

∴MH=m-(m-4)=4,NH=m+4-m=4,

∴MH=NH,

∴PH垂直平分MN,

∴PM=PN,

∴△PMN是等腰三角形;

(3)∠PAQ=∠PBQ.理由如下:

如圖3,設(shè)QAx軸相交于點C,QBx軸相交于點D,則和(2)同理可得QC=QD,

∴∠QCD=∠QDC,

∵∠QCD=∠MCA,

∴∠MCA=∠QDC,

(2)可知PM=PN,

∴∠PMN=∠PNM,

∵∠PMN=∠PAQ+∠MCA,∠PNM=∠QDC+∠DBN,

∴∠PAQ+∠MCA=∠QDC+∠DBN,

∵∠DBN=∠PBQ,

∴∠PAQ+∠MCA=∠QDC+∠PBQ,

∴∠PAQ=∠PBQ.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖DE⊙O的直徑,過點D⊙O的切線AD,CAD的中點,AE⊙O于點B,且四邊形BCOE是平行四邊形

(1)BC⊙O的切線嗎?若是,給出證明若不是請說明理由;

(2)⊙O半徑為1AD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O上的點,C是⊙O上的點,點DAB的延長線上,∠BCD=BAC.

(1)求證:CD是⊙O的切線;

(2)若∠D=30°,BD=2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形的面積為,依次取矩形各邊中點、、、,順次連結(jié)各中點得到第個四邊形,再依次取四邊形各邊中點、、、,順次連結(jié)各中點得到第個四邊形,……,按照此方法繼續(xù)下去,則第個四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直線EF、CD相交于點O,OAOB,OC平分∠AOF.

(1)若∠AOE=40°,求∠BOD的度數(shù)

(2)若∠AOE=30°,請直接寫出∠BOD的度數(shù);

(3)觀察(1)(2)的結(jié)果,猜想∠AOE和∠BOD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角墻角AOBOAOB,且OAOB長度不限)中,要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲倉,且地面矩形AOBC的面積為96m2

(1)求地面矩形AOBC的長;

(2)有規(guī)格為0.80×0.801.00×1.00(單位:m)的地板磚單價分別為55/塊和80/塊,若只選其中一種地板磚都恰好能鋪滿儲倉的矩形地面(不計縫隙),用哪一種規(guī)格的地板磚費用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)對數(shù)軸上的點P進(jìn)行如下操作:先把點P表示的數(shù)乘以,再把所得數(shù)對應(yīng)的點向右平移1個單位,得到點P的對應(yīng)點P′.點AB在數(shù)軸t,對線段AB上的每個點進(jìn)行上述操作后得到線段AB′,其中點A,B的對應(yīng)點分別為A′,B′.如圖1,若點A表示的數(shù)是﹣3,則點A′表示的數(shù)是   ,若點B′表示的數(shù)是2,則點B表示的數(shù)是   ;已知線段AB上的點E經(jīng)過上述操作后得到的對應(yīng)點E'E重合,則點E表示的數(shù)是   

2)在平面直角坐標(biāo)系xOy中,已知△ABC的頂點A(﹣20),B2,0),C2,4),對△ABC及其內(nèi)部的每個點進(jìn)行如下操作:把每個點的橫、縱坐標(biāo)都乘以同個實數(shù)a,將得到的點先向右平移m單位,冉向上平移n個單位(m0,n0),得到△ABC及其內(nèi)部的點,其中點A,B的對應(yīng)點分別為A′(1,2),B′(3,2).△ABC內(nèi)部是否存在點F,使得點F經(jīng)過上述操作后得到的對應(yīng)點F′與點F重合,若存在,求出點F的坐標(biāo);若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC中,BF是AC邊上中線,點D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當(dāng)△AEF周長最小時,∠CFE的大小是( 。

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若反比例函數(shù)y=(k≠0)的圖像經(jīng)過點P(-4,5),則該函數(shù)的圖像不經(jīng)過的點是(  )

A. (-5,4) B. (-2,10) C. (10,-2) D. (-10,-2)

查看答案和解析>>

同步練習(xí)冊答案