(本題滿分14分 第(1)小題4分,第(2)小題4分,第(3)小題6分)
已知:如圖,在△ABC中,AB=AC=15, cos∠A=.點M在AB邊上,AM=2MB,點P是邊AC上的一個動點,設PA=x.
(1)求底邊BC的長;
(2)若點O是BC的中點,聯(lián)接MP、MO、OP,設四邊形AMOP的面積是y,求y關于x的函數(shù)關系式,并出寫出x的取值范圍;
(3)把△MPA沿著直線MP翻折后得到△MPN,是否可能使△MPN的一條邊(折痕邊PM除外)與AC垂直?若存在,請求出x的值;若不存在,請說明理由.
(1)BC=3
(2)y =x+. 0<x≤15)
(3)x=2或5或14時滿足△MPN的一條邊與AC垂直
解析試題分析:解:(1)作BH⊥AC于點H(如圖一),
∵在Rt△ABH中,cos∠A=,AB=15,
∴AH=12………………………………………………(1分)
∴BH=9.………………………………………………(1分)
∵AC=15
∴CH=3.………………………………………………(1分)
∵BC2=BH2+CH2,∴BC2=92+32=90,∴BC=3.…(1分)
(2)作OE⊥AB于點E,OF⊥AC于點F(如圖一),
∵點O是BC的中點,∴OE=OF=BH=.
∵AM=2MB,AB=AC=15,∴AM=10,BM=5.
∵PA=x,∴PC=15-x,
∴y = S△ABC-S△BOM-S△COP=BH·AC―OE·BM―OF·PC
=×9×15--…………………(1+1分)
=x+.…………………………………(1分)
定義域:(0<x≤15).…………………………… (1分)
(3)①當PN⊥AC時(如圖二),作MG⊥AC于點G,
∵在Rt△AMG中,cos∠A=,AM=10
∴AG=8,∴MG=6.
①若點P1在AG上,由折疊知:∠AP1M=135°,∴∠MP1G=45°.
∵MG⊥AC,∴P1G=MG=6,………(1分)∴AP1=AG-P1G=2.…………(1分)
②若點P2在CG上,由折疊知:∠AP2M=45°.
∵MG⊥AC,∴P2G=MG=6,∴AP2=AG+P2G=14.…………(2分)
③當MN⊥AC時(如圖三),
由折疊知:∠AMP3=∠NMP3,P3N3=AP3=x,MN3=MA=10,
∴P3G=8-x,GN3=4.
∵P3N32=P3G2+GN32,∴x2=(8-x)2+42,∴x=5.……(2分)
綜上所述,x=2或5或14時滿足△MPN的一條邊與AC垂直.
考點:三角函數(shù)應用
點評:本題的考查在于建立三角函數(shù)模型,主要考查函數(shù)的應用。解決此類問題通常有幾個步驟:(1)閱讀理解,認真審題;(2)引進數(shù)學符號,建立數(shù)學模型;(3)利用數(shù)學的方法,得到數(shù)學結果,其中關鍵是建立數(shù)學模型.
科目:初中數(shù)學 來源: 題型:
(本題滿分14分,第(1)小題滿分4分,第(2)、(3)小題滿分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.點P是AB邊上任意一點,直線PE⊥AB,與邊AC或BC相交于E.點M在線段AP上,點N在線段BP上,EM=EN,.
(1)如圖1,當點E與點C重合時,求CM的長;
(2)如圖2,當點E在邊AC上時,點E不與點A、C重合,設AP=x,BN=y,求y關于x的函數(shù)關系式,并寫出函數(shù)的定義域;
(3)若△AME∽△ENB(△AME的頂點A、M、E分別與△ENB的頂點E、N、B對應),求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源:2012-2013學年上海市閘北區(qū)中考一模數(shù)學試卷(解析版) 題型:解答題
(本題滿分14分 第(1)小題4分,第(2)小題4分,第(3)小題6分)
已知:如圖,在△ABC中,AB=AC=15, cos∠A=.點M在AB邊上,AM=2MB,點P是邊AC上的一個動點,設PA=x.
(1)求底邊BC的長;
(2)若點O是BC的中點,聯(lián)接MP、MO、OP,設四邊形AMOP的面積是y,求y關于x的函數(shù)關系式,并出寫出x的取值范圍;
(3)把△MPA沿著直線MP翻折后得到△MPN,是否可能使△MPN的一條邊(折痕邊PM除外)與AC垂直?若存在,請求出x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(廣東深圳卷)數(shù)學 題型:解答題
(本題滿分14分,第(1)小題滿分4分,第(2)、(3)小題滿分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.點P是AB邊上任意一點,直線PE⊥AB,與邊AC或BC相交于E.點M在線段AP上,點N在線段BP上,EM=EN,.
(1)如圖1,當點E與點C重合時,求CM的長;
(2)如圖2,當點E在邊AC上時,點E不與點A、C重合,設AP=x,BN=y,求y關于x的函數(shù)關系式,并寫出函數(shù)的定義域;
(3)若△AME∽△ENB(△AME的頂點A、M、E分別與△ENB的頂點E、N、B對應),求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源:2010-2011學年上海市考模擬數(shù)學試卷 題型:解答題
(本題滿分14分,第(1)、(2)小題每小題滿分5分,第(3)小題滿分4分)
已知,在邊長為6的正方形ABCD的兩側如圖作正方形BEFG、正方形DMNK,恰好使得N、A、F三點在一直線上,聯(lián)結MF交線段AD于點P,聯(lián)結NP,設正方形BEFG的邊長為x,正方形DMNK的邊長為y,
(1)求y關于x的函數(shù)關系式及自變量x的取值范圍;
(2)當△NPF的面積為32時,求x的值;
(3)以P為圓心,AP為半徑的圓能否與以G為圓心,GF為半徑的圓相切,若能請求x的值,若不能,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com