閱讀材料:如圖1,在平面直角坐標系中,A、B兩點的坐標分別為A(x1,y1),B(x2,y2),AB中點P的坐標為(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中點坐標為.由勾股定理得,所以A、B兩點間的距離公式為
注:上述公式對A、B在平面直角坐標系中其它位置也成立.
解答下列問題:

如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點,P為AB的中點,過P作x軸的垂線交拋物線于點C.
(1)求A、B兩點的坐標及C點的坐標;
(2)連結AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點時得到直線l′,求兩直線l與l′的距離.
解:(1)由,解得:。
∴A,B兩點的坐標分別為:A(,),B()。
∵P是A,B的中點,由中點坐標公式得P點坐標為(,3)。
又∵PC⊥x軸交拋物線于C點,將x=代入y=2x2中得y=,
∴C點坐標為(,)。
(2)證明:由兩點間距離公式得:

∴PC=PA=PB。
∴∠PAC=∠PCA,∠PBC=∠PCB。
∴∠PAC+∠PCB=90°,即∠ACB=90°!唷鰽BC為直角三角形。
(3)如圖,過點C作CG⊥AB于G,過點A作AH⊥PC于H,
則H點的坐標為(,)。

。
又直線l與l′之間的距離等于點C到l的距離CG,∴直線l與l′之間的距離為。
(1)根據(jù)y=2x+2與拋物線y=2x2交于A、B兩點,直接聯(lián)立求出交點坐標,進而得出C點坐標即可;
(2)利用兩點間距離公式得出AB的長,進而得出PC=PA=PB,求出∠PAC+∠PCB=90°,即∠ACB=90°即可得出答案。
(3)過點C作CG⊥AB于G,過點A作AH⊥PC于H,利用A,C點坐標得出H點坐標,進而得出CG=AH,求出即可!
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長分別為m、4m(m>0),D為邊AB的中點,一拋物線l經過點A、D及點M(﹣1,﹣1﹣m).

(1)求拋物線l的解析式(用含m的式子表示);
(2)把△OAD沿直線OD折疊后點A落在點A′處,連接OA′并延長與線段BC的延長線交于點E,若拋物線l與線段CE相交,求實數(shù)m的取值范圍;
(3)在滿足(2)的條件下,求出拋物線l頂點P到達最高位置時的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點,過點A的直線l與拋物線交于點C,其中A點的坐標是(1,0),C點坐標是(4,3).

(1)求拋物線的解析式;
(2)在(1)中拋物線的對稱軸上是否存在點D,使△BCD的周長最?若存在,求出點D的坐標,若不存在,請說明理由;
(3)若點E是(1)中拋物線上的一個動點,且位于直線AC的下方,試求△ACE的最大面積及E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,頂點為(3,4)的拋物線交 y軸與A點,交x軸與B、C兩點(點B在點C的左側),已知A點坐標為(0,-5).

(1)求此拋物線的解析式;
(2)過點B作線段AB的垂線交拋物線與點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與⊙C的位置關系,并給出證明.
(3)在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形.若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線C1:y=x2。如圖(1),平移拋物線C1得到拋物線C2,C2經過C1的頂點O和A(2,0),C2的對稱軸分別交C1、C2于點B、D。

(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結論;
(3)如圖(2),將拋物線C2向下平移m個單位(m>0)得拋物線C3,C3的頂點為G,與y軸交于M。點N是M關于x軸的對稱點,點P()在直線MG上。問:當m為何值時,在拋物線C3上存在點Q,使得以M、N、P、Q為頂點的四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標為(0,6),將△BCD沿BD折疊(D點在OC邊上),使C點落在DA邊的E點上,并將△BAE沿BE折疊,恰好使點A落在BD邊的F點上.

(1)求BC的長,并求折痕BD所在直線的函數(shù)解析式;
(2)過點F作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線經過B,H, D三點,求拋物線解析式;
(3)點P是矩形內部的點,且點P在(2)中的拋物線上運動(不含B, D點),過點P作PN⊥BC,分別交BC 和 BD于點N, M,是否存在這樣的點P,使如果存在,求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川自貢14分)如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D(2,3),tan∠DBA=

(1)求拋物線的解析式;
(2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)是二次函數(shù)的是【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=ax2+bx+c(a<0)如圖所示,則關于x的不等式ax2+bx+c>0的解集是
A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>1

查看答案和解析>>

同步練習冊答案