如圖,在平面直角坐標系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標為(0,6),將△BCD沿BD折疊(D點在OC邊上),使C點落在DA邊的E點上,并將△BAE沿BE折疊,恰好使點A落在BD邊的F點上.

(1)求BC的長,并求折痕BD所在直線的函數(shù)解析式;
(2)過點F作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線經(jīng)過B,H, D三點,求拋物線解析式;
(3)點P是矩形內部的點,且點P在(2)中的拋物線上運動(不含B, D點),過點P作PN⊥BC,分別交BC 和 BD于點N, M,是否存在這樣的點P,使如果存在,求出點P的坐標;如果不存在,請說明理由.
解:(1)由翻折可知:△BCD≌△BED,∴∠CBD=∠DBE。
又∵△ABE≌△FBE,∴∠DBE=∠ABE。
又∵四邊形OCBA為矩形,∴∠CBD=∠DBE=∠ABE=30°。
在Rt△DOE中,∠ODE=60°,∴DE=CD=2OD。
∵OC=OD+CD=6,∴OD+2OD=6,∴OD=2,D(0,2)!郈D=4。
在Rt△CDB中,BC=CD•tan60°=4,∴B(4,6)。
設直線BD的解析式為y=kx+b,由題意得:,解得
∴直線BD的解析式為:。
(2)在Rt△FGE中,∠FEG=60°,F(xiàn)E=AE.
由(1)易得:OE=2,∴FE=AE=2。
∴FG=3,GE=。∴OG=。
∵H是FG的中點,∴H(,)。
∵拋物線經(jīng)過B、H、D三點,
,解得
∴拋物線解析式為。
(3)存在。
∵P在拋物線上,∴設P(x,),M(x,),N(x,6)。
∵SBNM=SBPM,∴PM=MN.即:。
整理得:,解得:x=2或x=4。
當x=2時,;
當x=4時,,與點B重合,不符合題意,舍去。
∴P(2,2)。
∴存在點P,使SBNM=SBPM,點P的坐標為(2,2)。

試題分析:(1)首先由折疊性質得到∠CBD=∠DBE=∠ABE=30°,然后解直角三角形得到點D、點B的坐標,最后用待定系數(shù)法求出直線BD的解析式;
(2)點B、D坐標已經(jīng)求出,關鍵是求出點H的坐標.在Rt△FGE中,解直角三角形求出點H的坐標,再利用待定系數(shù)法求出拋物線的解析式。
(3)由SBNM=SBPM,且這兩個三角形等高,所以得到PM=MN.由此結論,列出方程求出點P的坐標。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系xOy中,直線y=kx(k為常數(shù))與拋物線交于A,B兩點,且A點在y軸左側,P點的坐標為(0,﹣4),連接PA,PB.有以下說法:
①PO2=PA•PB;
②當k>0時,(PA+AO)(PB﹣BO)的值隨k的增大而增大;
③當時,BP2=BO•BA;
④△PAB面積的最小值為
其中正確的是     (寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O為原點,OC、OA所在直線為軸建立坐標系.拋物線頂點為A,且經(jīng)過點C.點P在線段AO上由A向點O運動,點O在線段OC上由C向點O運動,QD⊥OC交BC于點D,OD所在直線與拋物線在第一象限交于點E.

(1)求拋物線的解析式;
(2)點E′是E關于y軸的對稱點,點Q運動到何處時,四邊形OEAE′是菱形?
(3)點P、Q分別以每秒2個單位和3個單位的速度同時出發(fā),運動的時間為t秒,當t為何值時,PB∥OD?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知M1(3,2),N1(5,﹣1),線段M1N1平移至線段MN處(注:M1與M,N1與N分別為對應點).

(1)若M(﹣2,5),請直接寫出N點坐標.
(2)在(1)問的條件下,點N在拋物線上,求該拋物線對應的函數(shù)解析式.
(3)在(2)問條件下,若拋物線頂點為B,與y軸交于點A,點E為線段AB中點,點C(0,m)是y軸負半軸上一動點,線段EC與線段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)問條件下,動點P從B點出發(fā),沿x軸正方向勻速運動,點P運動到什么位置時(即BP長為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時的△ABP面積的,求此時BP的長度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是菱形,對角線AC與BD交于點O,且AC=80,BD=60.動點M、N分別以每秒1個單位的速度從點A、D同時出發(fā),分別沿A→O→D和D→A運動,當點N到達點A時,M、N同時停止運動.設運動時間為t秒.

(1)求菱形ABCD的周長;
(2)記△DMN的面積為S,求S關于t的解析式,并求S的最大值;
(3)當t=30秒時,在線段OD的垂直平分線上是否存在點P,使得∠DPO=∠DON?若存在,這樣的點P有幾個?并求出點P到線段OD的距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線y=x與拋物線交于A、B兩點.

(1)求交點A、B的坐標;
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個點,使得每個點與AB構成的三角形為等腰三角形?并求出不少于3個滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知兩點均在拋物線上,點是該拋物線的頂點,若,則的取值范圍是【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀材料:如圖1,在平面直角坐標系中,A、B兩點的坐標分別為A(x1,y1),B(x2,y2),AB中點P的坐標為(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中點坐標為.由勾股定理得,所以A、B兩點間的距離公式為
注:上述公式對A、B在平面直角坐標系中其它位置也成立.
解答下列問題:

如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點,P為AB的中點,過P作x軸的垂線交拋物線于點C.
(1)求A、B兩點的坐標及C點的坐標;
(2)連結AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點時得到直線l′,求兩直線l與l′的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結論正確的是
A.a(chǎn)<0,b<0,c>0,b2﹣4ac>0B.a(chǎn)>0,b<0,c>0,b2﹣4ac<0
C.a(chǎn)<0,b>0,c<0,b2﹣4ac>0D.a(chǎn)<0,b>0,c>0,b2﹣4ac>0

查看答案和解析>>

同步練習冊答案