已知二次函數(shù)y=(x-1)2-3,則此二次函數(shù)( 。
A、有最大值1
B、有最小值1
C、有最大值-3
D、有最小值-3
考點(diǎn):二次函數(shù)的最值
專題:
分析:根據(jù)二次函數(shù)的最值問(wèn)題解答.
解答:解:∵a=1>0,
∴二次函數(shù)y=(x-1)2-3有最小值-3.
故選D.
點(diǎn)評(píng):本題考查了二次函數(shù)的最值,是基礎(chǔ)題,熟記二次函數(shù)的最值問(wèn)題是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-2(k+1)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)求證:x=-1不可能是此方程的實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將矩形A1B1C1D1沿EF折疊,使B1點(diǎn)落在A1D1邊上的B點(diǎn)處;再將矩形A1B1C1D1沿BG折疊,使D1點(diǎn)落在D點(diǎn)處且BD過(guò)F點(diǎn).
(1)求證:四邊形BEFG是平行四邊形;
(2)當(dāng)∠B1FE是多少度時(shí),四邊形BEFG為菱形?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:正方形ABCD中,△ADE旋轉(zhuǎn)一定的角度后得到△ABF,AB=5,DE=2,
(1)指出旋轉(zhuǎn)中心、和旋轉(zhuǎn)角度;
(2)求EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某廠一月份生產(chǎn)某機(jī)器100臺(tái),計(jì)劃三月份生產(chǎn)160臺(tái).設(shè)二、三月份每月的平均增長(zhǎng)率為x,根據(jù)題意列出的方程是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商品的進(jìn)價(jià)為每件40元.當(dāng)售價(jià)為每件60元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問(wèn)題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)每件商品的售價(jià)定為多少元時(shí),每星期的利潤(rùn)恰為6080元?根據(jù)以上結(jié)論,請(qǐng)你直接寫出售價(jià)在什么范圍時(shí),每星期的利潤(rùn)不低于6080元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)-12013-|-2|-
1
16
+(-2)-2-(
3
-2)0
+tan60°;
(2)解不等式組
2x+4≤5(x+2)①
x-1<
2
3
x②
,并求它的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用配方法解方程x2-2x-6=0,原方程可化為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,若OA、OB是⊙O的半徑,CB是⊙O的弦,∠AOB=64°,則∠ACB=( 。
A、16°B、58°
C、32°D、64°

查看答案和解析>>

同步練習(xí)冊(cè)答案