【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DEAB,過點EEFDE,交BC的延長線于點F.

(1)求證:△CEF是等腰三角形;

(2)若CD=2,求DF的長.

【答案】(1)證明見解析;(2)4;

【解析】

(1)證明DCE中的三個角均為60°,然后再求得∠F=30°,從而可得到∠CEF=30°,故此可得到CEF為等腰三角形;
(2)先求得CF=DE,然后由EC=DC進行求解即可.

(1)∵△ABC是等邊三角形,

∴∠A=B=ACB=60°.

DEAB,

∴∠B=EDC=60°,A=CED=60°,

∴∠EDC=ECD=DEC=60°,

EFED,

∴∠DEF=90°,

∴∠F=30°

∵∠F+FEC=ECD=60°,

∴∠F=FEC=30°,

CE=CF.

∴△CEF為等腰三角形.

(2)由(1)可知∠EDC=ECD=DEC=60°,

CE=DC=2.

又∵CE=CF,

CF=2.

DF=DC+CF=2+2=4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(
A.
等邊三角形
B.
平行四邊形
C.
正方形
D.
正五邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,射線CBOA,C=OAB=100°,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF。

(1)求∠EOB的度數(shù);

(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個比值;

(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=OBA?若存在,求出其度數(shù);若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,AC上的中線BD把三角形的周長分為15㎝和30㎝的兩個部分,求:三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將在Rt△ABC繞其銳角頂點A旋轉90°得到在Rt△ADE,連接BE,延長DE、BC相交于點F,則有∠BFE=90°,且四邊形ACFD是一個正方形.

(1)判斷△ABE的形狀,并證明你的結論;

(2)用含b代數(shù)式表示四邊形ABFE的面積;

(3)求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,∠ABC=45°,AHBC于點H,點DAH上的一點,且DH=HC,連接BD并延長BDAC于點E,連接EH.

(1)請補全圖形;

(2)求證:△ABE是直角三角形;

(3)若BE=a,CE=b,求出SCEH:SBEH的值(用含有a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某縣政府為了迎接八一建軍節(jié),加強軍民共建活動,計劃從花園里拿出1430盆甲種花卉和1220盆乙種花卉,搭配成A、B兩種園藝造型共20個,在城區(qū)內擺放,以增加節(jié)日氣氛,已知搭配A、B兩種園藝造型各需甲、乙兩種花卉數(shù)如表所示:(單位:盆)

(1)某校某年級一班課外活動小組承接了這個園藝造型搭配方案的設計,問符合題意的搭配方案有幾種?請你幫忙設計出來.

(2)如果搭配及擺放一個A造型需要的人力是8人次,搭配及擺放一個B造型需要的人力是11人次,哪種方案使用人力的總人次數(shù)最少,請說明理由.

造型數(shù)量花

A

B

甲種

80

50

乙種

40

90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解一元二次不等式

請按照下面的步驟,完成本題的解答.

解: 可化為

(1)依據(jù)兩數(shù)相乘,同號得正,可得不等式組① 或不等式組②________

(2)解不等式組①,得________

(3)解不等式組②,得________

(4)一元二次不等式 的解集為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某地一座拋物線形拱橋,橋拱在豎直平面內,與水平橋面相交于A、B兩點,拱橋最高點C到AB的距離為4m,AB=12m,D、E為拱橋底部的兩點,且DE∥AB,點E到直線AB的距離為5m,則DE的長為m.

查看答案和解析>>

同步練習冊答案