【題目】平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,已知AB=8AD=6,∠BAD=60°,點A的坐標(biāo)為(-2,0).

求:(1)點C的坐標(biāo);

2)直線ACy軸的交點E的坐標(biāo).

【答案】1C(9, );(2E0,

【解析】

(1)CCHx軸于點H,利用平行四邊形的性質(zhì)結(jié)合直角三角形的性質(zhì)得出C點坐標(biāo);

(2) 利用待定系數(shù)法求出一次函數(shù)解析式,再利用x =0進而得出答案.

解:(1)過CCHx軸于點H,

∵四邊形ABCD為平行四邊形,

CD=AB=8,BC=AD=6,AB//DC,AD//BC

∴∠BAD=HBC

∵∠BAD =60°

∴∠HBC=60°

BH=3,CH=

A-20),

AO=2

OB=6

OH=OB+BH=9

C(9)

2)設(shè)直線AC的表達式為:y=kx+b,把A-20)和C(9,)代入,得

,

解得:

E0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,3),點B和點D的坐標(biāo)分別為(m,0),(n,4),且m0,四邊形ABCD是矩形.

(1)如圖1,當(dāng)四邊形ABCD為正方形時,求m,n的值;

(2)在圖2中,畫出矩形ABCD,簡要說明點C,D的位置是如何確定的,并直接用含m的代數(shù)式表示點C的坐標(biāo);

(3)探究:當(dāng)m為何值時,矩形ABCD的對角線AC的長度最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店新進一種臺燈.這種臺燈的成本價為每個30元,經(jīng)調(diào)查發(fā)現(xiàn),這種臺燈每天的銷售量y(單位:個)是銷售單價x(單位:元)(30≤x≤60)的一次函數(shù).

x

30

35

40

45

50

y

30

25

20

15

10

(1)求銷售量y與銷售單價x之間的函數(shù)表達式;

(2)設(shè)這種臺燈每天的銷售利潤為w元.這種臺燈銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:①abc0;2a+b0;b2﹣4ac0;a﹣b+c0,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長方形紙片紙沿對角線折疊,設(shè)重疊部分為,那么,下列說法錯誤的是(

A.是等腰三角形,

B.折疊后ABECBD一定相等

C.折疊后得到的圖形是軸對稱圖形

D.EBAEDC一定是全等三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由矩形(非正方形)各內(nèi)角平分線所圍成的四邊形一定是(  )

A. 平行四邊形 B. 矩形 C. 菱形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B46°,三角形的外角∠DAC和∠ACF的平分線交于點E,則∠AEC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品現(xiàn)在的售價為每件60元,每個星期可賣出300件,市場調(diào)查反映:如調(diào)整價格,每漲價1元,每個星期要少賣出10件;每降價1元,每個星期可多賣出20件.已知商品進價為每件40元,設(shè)每件商品的售價為x元(且x為正整數(shù)),每個星期的銷售量為y件.

(1)求yx的函數(shù)關(guān)系并直接寫出自變量x的取值范圍;

(2)設(shè)每星期的銷售利潤為W,請直接寫出Wx的關(guān)系式;

(3)每件商品的售價定為多少元時,每個星期可獲得最大利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

同步練習(xí)冊答案