【題目】有一種動畫設計,屏幕上的長方形ABCD是黑色區(qū)域(含長方形的邊界),其中A(﹣1,1)、B2,1)、C2,2),D(﹣1,2),用信號槍沿直線ykx2發(fā)射信號,當信號遇到黑色區(qū)域時,區(qū)域便由黑變白,則能夠使黑色區(qū)域變白的k的取值范圍是_____

【答案】k≤﹣3k

【解析】

利用一次函數(shù)圖象上點的坐標特征求出當點AB分別在直線ykx2上時k的值,結(jié)合圖形即可得出能夠使黑色區(qū)域變白的k的取值范圍.

如圖,

當點A(﹣1,1)在直線ykx2上時,1=﹣k2

解得:k=﹣3;

當點B2,1)在直線ykx2上時,12k2

解得:k

∴能夠使黑色區(qū)域變白的k的取值范圍是k3k

故答案為:k3k

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小軒從如圖所示的二次函數(shù)y=ax2+bx+ca≠0)的圖象中,觀察得出了下面五條信息:

ab0a+b+c0;b+2c0a﹣2b+4c0;

你認為其中正確信息的個數(shù)有

A2B3C4D5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的OADAC分別交于點E,F,且ACB=∠DCE

1)判斷直線CEO的位置關(guān)系,并證明你的結(jié)論;

2)若tan∠ACB=,BC=4,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.在ABC中,∠ACB=60°,AC=1,D是邊AB的中點,E是邊BC上一點.若DE平分ABC的周長,則DE的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx-的圖象經(jīng)過點A-1,0)、C2,0),與y軸交于點B,其對稱軸與x軸交于點D

1)求二次函數(shù)的表達式及其頂點坐標;

2Mst)為拋物線對稱軸上的一個動點,

①若平面內(nèi)存在點N,使得A、B、MN為頂點的四邊形為矩形,直接寫出點M的坐標;

②連接MA、MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點AC分別在x、y軸的正半軸上,頂點B的坐標為(42)點M是邊BC上的一個動點(不與B、C重合),反比例函數(shù)k0,x0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN

(1)當點M是邊BC的中點時,求反比例函數(shù)的表達式;

(2)在點M的運動過程中,試證明:是一個定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,C=90°,點OAC上,以OA為半徑的OAB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE

1)判斷直線DEO的位置關(guān)系,并說明理由;

2)若AC=6,BC=8OA=2,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:圖象①②③均是以P0為圓心,1個單位長度為半徑的扇形,將圖形①②③分別沿東北,正南,西北方向同時平移,每次移動一個單位長度,第一次移動后圖形①②③的圓心依次為P1P2P3,第二次移動后圖形①②③的圓心依次為P4P5P6,依此規(guī)律,P0P2018=_____個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,RtOAB的頂點Ax軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(10),點P為斜邊OB上的一動點,則PA+PC的最小值_____

查看答案和解析>>

同步練習冊答案