【題目】如圖,已知AD⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°,那么BC⊥AB,說明理由.
【答案】證明:∵DE,CE分別平分∠ADC,∠BCD, ∴∠ADC=2∠1,∠BCD=2∠2,
∵∠1+∠2=90°,
∴∠ADC+∠BCD=2∠1+2∠2=2(∠1+∠2)=180°,
∴AD∥BC,
∵DA⊥AB,
∴CB⊥AB
【解析】根據(jù)角平分線的性質(zhì)可得∠ADC=2∠1,∠BCD=2∠2,然后可得∠ADC+∠BCD=2∠1+2∠2=2(∠1+∠2)=180°,再根據(jù)平行線的判定可得AD∥BC,再根據(jù)平行線的性質(zhì)可得答案.
【考點精析】根據(jù)題目的已知條件,利用垂線的性質(zhì)的相關知識可以得到問題的答案,需要掌握垂線的性質(zhì):1、過一點有且只有一條直線與己知直線垂直.2、垂線段最短.
科目:初中數(shù)學 來源: 題型:
【題目】車庫的電動門欄桿如圖所示,BA垂直于地面AE于A,CD平行于地面AE,則∠ABC+∠BCD的大小是( )
A.150°
B.180°
C.270°
D.360°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=110°,DE、FG分別為AB、AC的垂直平分線,E、G分別為垂足.
(1)求∠DAF的度數(shù);
(2)如果BC=10cm,求△DAF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過A(0,3),B(2,9)兩點.
(1)求這個一次函數(shù)的表達式;
(2)試判斷點P(﹣1,1)是否在這個一次函數(shù)的圖象上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com