精英家教網 > 初中數學 > 題目詳情
(2009•孝感)如圖,把一個棱長為3的正方體的每個面等分成9個小正方形,然后沿每個面正中心的一個正方形向里挖空(相當于挖去7個小正方體),所得到的幾何體的表面積是( )

A.78
B.72
C.54
D.48
【答案】分析:如圖所示,一、棱長為3的正方體的每個面等分成9個小正方形,那么每個小正方形的邊長是1,所以每個小正方面的面積是1;二、正方體的一個面有9個小正方形,挖空后,這個面的表面積增加了4個小正方形,即:每個面有12個小正方形,6個面就是6×12=72個,那么幾何體的表面積為72×1=72.
解答:解:如圖所示,周邊的六個挖空的正方體每個面增加4個正方形,且減少了1個正方形,則每個面的正方形個數為12個,則表面積為12×6×1=72.
故選B.
點評:本題關鍵要能夠想象出物體表面積的變化情況,主要考查空間想象能力.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年廣東省初中畢業(yè)生學業(yè)考試數學試卷(十一)(解析版) 題型:解答題

(2009•孝感)如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點P是圓外一點,PA切⊙O于點A,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)已知PA=,BC=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源:2010年福建省莆田市中考數學仿真模擬試卷(二)(解析版) 題型:解答題

(2009•孝感)如圖,點P是雙曲線(k1<0,x<0)上一動點,過點P作x軸、y軸的垂線,分別交x軸、y軸于A、B兩點,交雙曲線y=(0<k2<|k1|)于E、F兩點.
(1)圖1中,四邊形PEOF的面積S1=______(用含k1、k2的式子表示);
(2)圖2中,設P點坐標為(-4,3).
①判斷EF與AB的位置關系,并證明你的結論;
②記S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年湖北省孝感市中考數學試卷(解析版) 題型:解答題

(2009•孝感)如圖,點P是雙曲線(k1<0,x<0)上一動點,過點P作x軸、y軸的垂線,分別交x軸、y軸于A、B兩點,交雙曲線y=(0<k2<|k1|)于E、F兩點.
(1)圖1中,四邊形PEOF的面積S1=______(用含k1、k2的式子表示);
(2)圖2中,設P點坐標為(-4,3).
①判斷EF與AB的位置關系,并證明你的結論;
②記S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年湖北省孝感市中考數學試卷(解析版) 題型:填空題

(2009•孝感)如圖,點M是△ABC內一點,過點M分別作直線平行于△ABC的各邊,所形成的三個小三角形△1,△2,△3(圖中陰影部分)的面積分別是4,9和49.則△ABC的面積是   

查看答案和解析>>

科目:初中數學 來源:2009年湖北省孝感市中考數學試卷(解析版) 題型:選擇題

(2009•孝感)如圖,將放置于平面直角坐標系中的三角板AOB繞O點順時針旋轉90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,則B′點的坐標為( )

A.(,
B.(
C.(,
D.(,

查看答案和解析>>

同步練習冊答案