【題目】已知關于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有實數(shù)根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的圖象關于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當直線y=2x+n(n≥m)與變化后的圖象有公共點時,求n2﹣4n的最大值和最小值.

【答案】
(1)解:對于一元二次方程x2﹣(m+1)x+ (m2+1)=0,

△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2

∵方程有實數(shù)根,

∴﹣(m﹣1)2≥0,

∴m=1.


(2)解:由(1)可知y=x2﹣2x+1=(x﹣1)2,

圖象如圖所示:

平移后的解析式為y=﹣(x+2)2+2=﹣x2﹣4x﹣2.


(3)解:由 消去y得到x2+6x+n+2=0,

由題意△≥0,

∴36﹣4n﹣8≥0,

∴n≤7,

∵n≤m,m=1,

∴1≤n≤7,

令y′=n2﹣4n=(n﹣2)2﹣4,

∴n=2時,y′的值最小,最小值為﹣4,

n=7時,y′的值最大,最大值為21,

∴n2﹣4n的最大值為21,最小值為﹣4.


【解析】(1)由題意△≥0,列出不等式,解不等式即可;(2)畫出翻折.平移后的圖象,根據(jù)頂點坐標即可寫出函數(shù)的解析式;(3)首先確定n的取值范圍,利用二次函數(shù)的性質即可解決問題;
【考點精析】掌握求根公式和二次函數(shù)圖象的平移是解答本題的根本,需要知道根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根;平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(h,k)(2)對x軸左加右減;對y軸上加下減.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】
(1)解方程:x2+4x﹣1=0;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)y=﹣ x+b的圖象與x軸、y軸分別交于點A、B,與函數(shù)y=x的圖象交于點M,點M的橫坐標為2,在x軸上有一點P(a,0)(其中a>2),過點P作x軸的垂線,分別交函數(shù)y=﹣ x+b和y=x的圖象于點C、D.
(1)求點A的坐標;
(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )
A.(π﹣3)0=1
B.=±3
C.21=﹣2
D.(﹣a23=a6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有5張看上去無差別的卡片,正面分別寫著1,2,3,4,5,洗勻后正面向下放在桌子上,從中隨機抽取2張,抽出的卡片上的數(shù)字恰好是兩個連續(xù)整數(shù)的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點D,以AD為邊作等邊△ADE,延長ED交BC于點F,BC=2 ,則圖中陰影部分的面積為 . (結果不取近似值)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD是⊙O的直徑,BE是⊙O的弦,且BE∥CD,過點C的切線與EB的延長線交于點P,連接BC.
(1)求證:BC平分∠ABP;
(2)求證:PC2=PBPE;
(3)若BE﹣BP=PC=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.求作∠ABC的平分線,分別交AD,AD于P,Q兩點;并證明AP=AQ.(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是線段AE上的一動點,過D作CD交BE于C,并使得∠CDE=30°,則CD長度的取值范圍是

查看答案和解析>>

同步練習冊答案