【題目】閱讀材料,回答問(wèn)題:

小聰學(xué)完了銳角三角函數(shù)的相關(guān)知識(shí)后,通過(guò)研究發(fā)現(xiàn):如圖1,在RtABC中,如果∠C=90°,=30°,BC═a=1,AC=b=,AB=c=2,那么==2.通過(guò)上網(wǎng)查閱資料,他又知“sin90°=1”,因此他得到在含30°角的直角三角形中,存在著==的關(guān)系.

這個(gè)關(guān)系對(duì)于一般三角形還適用嗎?為此他做了如下的探究:

(1)如圖2,在RABC中,∠C=90°,BC=a,AC=b,AB=C,請(qǐng)判斷此時(shí)==的關(guān)系是否成立?答:   

(2)完成上述探究后,他又想對(duì)于任意的銳角ABC,上述關(guān)系還成立嗎?因此他又繼續(xù)進(jìn)行了如下的探究:

如圖3,在銳角ABC中,BC=a,AC=b,AB=c,請(qǐng)判斷此時(shí) ==的關(guān)系是否成立?并證明你的判斷.(提示:過(guò)點(diǎn)CCDABD,過(guò)點(diǎn)AAHBC,再結(jié)合定義或其它方法證明).

【答案】(1)成立;(2)見(jiàn)解析

【解析】

(1)因?yàn)?/span>=c,=c,=c,推出“==”成立,

(2)作CD⊥ABD.在Rt△ADCRt△BDC中,∠ADC=∠BDC=90°,可得sinA=,sinB=,推出==,可得=,同理,作AH⊥BCH,可證=,即可解決問(wèn)題.

(1)=c, =c, =c,

==成立,

故答案為成立.

(2)作CDABD.

∵在RtADCRtBDC中,∠ADC=BDC=90°,

sinA=,sinB=,

==,

=

同理,作AHBCH,可證=,

==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠B30°,AB4cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC方向以2cm/s的速度運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,則當(dāng)t_____秒時(shí),△ABP為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EBC邊上一點(diǎn),連接AE,延長(zhǎng)CB至點(diǎn)F,使,過(guò)點(diǎn)F于點(diǎn)H,射線FH分別交AB、CD于點(diǎn)M、N,交對(duì)角線AC于點(diǎn)P,連接AF.

依題意補(bǔ)全圖形;

求證:;

判斷線段FMPN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,點(diǎn)PAD上,AB=3,AP=1,將三角板的直角頂點(diǎn)放在點(diǎn)P處,三角板的兩直角邊分別能與ABBC邊相交于點(diǎn)E、F,連接EF

(1)如圖,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合,求此時(shí)PC的長(zhǎng);

(2)將三角板從(1)中的位置開(kāi)始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E與點(diǎn)A重合時(shí)停止,在這個(gè)過(guò)程中,請(qǐng)你觀察、探究并解答:在這個(gè)過(guò)程中,設(shè)CF=m.試解答:①用含m的代數(shù)式表示四邊形BEPF的面積,并直接寫(xiě)出m的取值范圍;②從開(kāi)始到停止,求線段EF的中點(diǎn)所經(jīng)過(guò)的路線長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABC中,ABACDBC邊上任意一點(diǎn),EAC邊上,且ADAE

1)若∠BAD40°,求∠EDC的度數(shù);

2)若∠EDC15°,求∠BAD的度數(shù);

3)根據(jù)上述兩小題的答案,試探索∠EDC與∠BAD的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD和正方形CEFG的邊長(zhǎng)分別為a和b,正方形CEFG繞點(diǎn)C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結(jié)論是(  )

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,斜坡AF的坡度為5:12,斜坡AF上一棵與水平面垂直的大樹(shù)BD在陽(yáng)光照射下,在斜坡上的影長(zhǎng)BC=6.5米,此時(shí)光線與水平線恰好成30°角,求大樹(shù)BD的高.(結(jié)果精確的0.1米,參考數(shù)據(jù)≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的長(zhǎng)和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請(qǐng)畫(huà)出關(guān)于軸對(duì)稱的

(3)請(qǐng)?jiān)?/span>軸上求作一點(diǎn),使的周長(zhǎng)最小,并寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案