【題目】給出下列四個命題:
(1)若點(diǎn)A在直線y=2x-3上,且點(diǎn)A到兩坐標(biāo)軸的距離相等,則點(diǎn)A在第一或第四象限;
(2)若A(a,m)、B(a-1,n)(a>0)在反比例函數(shù)y=
的圖象上,則m<n;
(3)一次函數(shù)y=-2x-3的圖象不經(jīng)過第三象限;
(4)二次函數(shù)y=-2x2-8x+1的最大值是9.
正確命題的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】B
【解析】
根據(jù)題意和函數(shù)的有關(guān)性質(zhì),逐一判斷每個命題的正確性.
(1)聯(lián)立,或,
解得 或,
所以點(diǎn)A的坐標(biāo)為(3,3)或((1,-1),在第一或第四象限正確.
(2)反比例函數(shù)y=,在每個象限內(nèi)y隨x的增大而減小,點(diǎn)A在第一象限,而點(diǎn)B不能確定在第幾象限,無法比較m、n的大小,錯誤;
(3)一次函數(shù)y=-2x-3的圖象不經(jīng)過第一象限,錯誤;
(4)二次函數(shù)y=-2x2-8x+1,可化為y=-2(x+2)2+9;
所以二次函數(shù)y=-2x2-8x+1的最大值是9,正確.
(1)、(4)正確,故選B.
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,BD、CD、BE分別平分△ABC的內(nèi)角∠ABC、外角∠ACP、外角∠MBC.以下結(jié)論:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠A+2∠BEC=180°;⑤DB平分∠ADC.其中正確的結(jié)論有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
(1)請用兩種不同的方法求圖2中陰影部分的面積.
方法1: ;
方法2: ;
(2)觀察圖2,請你寫出下列三個代數(shù)式:之間的等量關(guān)系: ;(3)根據(jù)(2)題中的等量關(guān)系,解決下面的問題:已知a+b=3,ab=2 , 求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD中,AB=6,BC=9,沿EF折疊,使點(diǎn)B落在DC邊上點(diǎn)P處,點(diǎn)A落在Q處,AD與PQ相交于點(diǎn)H.
(1)如圖1,當(dāng)點(diǎn)P為邊DC的中點(diǎn)時,求EC的長;
(2)如圖2,當(dāng)∠CPE=30°,求EC、AF的長;(3)如圖2,在(2)條件下,求四邊形EPHF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以AC,BC為邊作等邊△ACD和等邊△BCE.設(shè)△ACD,△BCE,△ABC的面積分別是S1,S2,S3,現(xiàn)有如下結(jié)論:
①S1∶S2=AC2∶BC2;②連接AE,BD,則△BCD≌△ECA;③若AC⊥BC,則S1·S2=S23.
其中結(jié)論正確的序號是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中AB=AC.
(1)作圖:在AC上有一點(diǎn)D,延長BD,并在BD的延長線上取點(diǎn)E,使AE=AB,連AE,作∠EAC的平分線AF,AF交DE于點(diǎn)F(用尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)在(1)的條件下,連接CF,求證:∠BAC=∠BFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題7分)如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.
(1)判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,M、N分別是邊OA、OB上的定點(diǎn),P、Q分別是邊OB、OA上的動點(diǎn),記∠AMP=∠1,∠ONQ=∠2,當(dāng)MP+PQ+QN最小時,則關(guān)于∠1、∠2的數(shù)量關(guān)系正確的是( )
A.∠1+∠2=90°B.2∠2-∠1=30°
C.2∠1+∠2=180°D.∠1-∠2=90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com