【題目】如圖,直線y=kx﹣2(k>0)與雙曲線 在第一象限內(nèi)的交點(diǎn)R,與x軸、y軸的交點(diǎn)分別為P、Q.過R作RM⊥x軸,M為垂足,若△OPQ與△PRM的面積相等,則k的值等于 .
【答案】2
【解析】解:∵y=kx﹣2,
∴當(dāng)x=0時,y=﹣2,
當(dāng)y=0時,kx﹣2=0,解得x= ,
所以點(diǎn)P( ,0),點(diǎn)Q(0,﹣2),
所以O(shè)P= ,OQ=2,
∵RM⊥x軸,
∴△OPQ∽△MPR,
∵△OPQ與△PRM的面積相等,
∴△OPQ與△PRM的相似比為1,即△OPQ≌△MPR,
∴OM=2OP= ,RM=OQ=2,
所以點(diǎn)R( ,2),
∵雙曲線 經(jīng)過點(diǎn)R,
∴ =2,即k2=8,
解得k1=2 ,k2=﹣2 (舍去).
所以答案是:2 .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用反比例函數(shù)的性質(zhì)和相似三角形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大;對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)E在AD邊上,連接BE、CE,EB平分∠AEC
(1)如圖1,判斷△BCE的形狀,并說明理由;
(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,△ABO的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(2a,0)、B(0,﹣a),線段EF兩端點(diǎn)坐標(biāo)為E(﹣m,a+1),F(xiàn)(﹣m,1)(2a>m>a);直線l∥y軸交x軸于P(a,0),且線段EF與CD關(guān)于y軸對稱,線段CD與NM關(guān)于直線l對稱.
(1)求點(diǎn)N、M的坐標(biāo)(用含m、a的代數(shù)式表示);
(2)△ABO與△MFE通過平移能重合嗎?能與不能都要說明其理由,若能請你說出一個平移方案(平移的單位數(shù)用m、a表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),D(6,4),將線段AD平移得到BC,使B(0,b),且a,b滿足|a﹣2|+=0,延長BC交x軸于點(diǎn)E.
(1)填空:點(diǎn)A( , ),點(diǎn)B( , ),∠DAE= ;
(2)求點(diǎn)C和點(diǎn)E的坐標(biāo);
(3)設(shè)點(diǎn)P是x軸上的一動點(diǎn)(不與點(diǎn)A、E重合),且PA>AE,探究∠APC與∠PCB的數(shù)量關(guān)系?寫出你的結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點(diǎn)A(﹣1,m)和點(diǎn)B(n,5).
(1)求該二次函數(shù)的關(guān)系式;
(2)在給定的平面直角坐標(biāo)系中,畫出這兩個函數(shù)的大致圖象;
(3)結(jié)合圖象直接寫出x2+bx+c>x+1時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點(diǎn)D,使DB=AB,連接CD,以CD為邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AB=2cm,則BE=_______cm.
(3)BE與AD有何位置關(guān)系?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com