如圖,已知AB=AC,∠A=36°,AB的中垂線MD交AC于點(diǎn)D、交AB于點(diǎn)M.下列結(jié)論:
①BD是∠ABC的平分線;
②△BCD是等腰三角形;
③△ABC∽△BCD;
④△AMD≌△BCD.
正確的有_________個(gè).


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
B
分析:首先由AB的中垂線MD交AC于點(diǎn)D、交AB于點(diǎn)M,求得△ABD是等腰三角形,即可求得∠ABD的度數(shù),又由AB=AC,即可求得∠ABC與∠C的度數(shù),則可求得所有角的度數(shù),可得△BCD也是等腰三角形,則可證得△ABC∽△BCD.
解答:∵AB的中垂線MD交AC于點(diǎn)D、交AB于點(diǎn)M,
∴AD=BD,
∴∠ABD=∠A=36°,
∵AB=AC,
∴∠ABC=∠C=72°,
∴∠DBC=∠ABC-∠ABD=36°,
∴∠ABD=∠CBD,
∴BD是∠ABC的平分線;故①正確;
∴∠BDC=180°-∠DBC-∠C=72°,
∴∠BDC=∠C=72°,
∴△BCD是等腰三角形,故②正確;
∵∠C=∠C,∠BDC=∠ABC=72°,
∴△ABC∽△BCD,故③正確;
∵△AMD中,∠AMD=90°,△BCD中沒(méi)有直角,
∴△AMD與△BCD不全等,故④錯(cuò)誤.
故選B.
點(diǎn)評(píng):此題考查了線段垂直平分線的性質(zhì),等腰三角形的性質(zhì),以及相似三角形的判定與性質(zhì)等知識(shí).此題綜合性較強(qiáng),但難度不大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,則∠BFD的度數(shù)是( 。
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,已知AB=AC,D是BC的中點(diǎn),E是AD上的一點(diǎn),圖中全等三角形有幾對(duì)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖,已知AB=AC,AD=AE.求證BD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,已知AB=AC,AD=AE,BD=EC,則圖中有
2
對(duì)全等三角形,它們是
△ABD≌△AEC
△ABE≌△ADC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案