如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長度;

(2)求建筑物CD的高度(結(jié)果保留根號(hào)).


       解:(1)根據(jù)題意得:BD∥AE,

∴∠ADB=∠EAD=45°,

∵∠ABD=90°,

∴∠BAD=∠ADB=45°,

∴BD=AB=60,

∴兩建筑物底部之間水平距離BD的長度為60米;

(2)延長AE、DC交于點(diǎn)F,根據(jù)題意得四邊形ABDF為正方形,

∴AF=BD=DF=60,

在Rt△AFC中,∠FAC=30°,

∴CF=AF•tan∠FAC=60×=20,

又∵FD=60,

∴CD=60﹣20,

∴建筑物CD的高度為(60﹣20)米.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


 

下面計(jì)算正確的是( 。

 

A.

3a﹣2a=1

B.

3a2+2a=5a3

C.

(2ab)3=6a3b3

D.

﹣a4•a4=﹣a8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在梯形OABC中,OC∥AB,OA=CB,點(diǎn)O為坐標(biāo)原點(diǎn),且A(2,﹣3),C(0,2).

(1)求過點(diǎn)B的雙曲線的解析式;

(2)若將等腰梯形OABC向右平移5個(gè)單位,問平移后的點(diǎn)C是否落在(1)中的雙曲線上?并簡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在函數(shù)y=中,自變量x的取值范圍是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在正方形ABCD中,AC為對(duì)角線,點(diǎn)E在AB邊上,EF⊥AC于點(diǎn)F,連接EC,AF=3,△EFC的周長為12,則EC的長為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


2的相反數(shù)是(  )

    A.                       ﹣2 B.                       ﹣                            C.        D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,一艘海輪位于燈塔P的北偏東30°方向,距離燈塔80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,這時(shí),海輪所在的B處與燈塔P的距離為( 。

    A.                       40海里                   B.                             40海里       C. 80海里   D. 40海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點(diǎn)M(﹣2,),頂點(diǎn)坐標(biāo)為N(﹣1,),且與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).

(1)求拋物線的解析式;

(2)點(diǎn)P為拋物線對(duì)稱軸上的動(dòng)點(diǎn),當(dāng)△PBC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);

(3)在直線AC上是否存在一點(diǎn)Q,使△QBM的周長最。咳舸嬖,求出Q點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知關(guān)于x的方程mx2﹣(m+2)x+2=0(m≠0).

(1)求證:方程總有兩個(gè)實(shí)數(shù)根;

(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求正整數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案