【題目】如圖,AB是半圓O的直徑,點(diǎn)C為半徑OB上一點(diǎn),過(guò)點(diǎn)CCDAB交半圓O于點(diǎn)D,將△ACD沿AD折疊得到△AEDAE交半圓于點(diǎn)F,連接DF

1)求證:DE是半圓的切線:

2)連接0D,當(dāng)OC=BC時(shí),判斷四邊形ODFA的形狀,并證明你的結(jié)論.

【答案】1)證明見(jiàn)解析(2)四邊形ODFA是菱形

【解析】試題分析:(1)連接OD,由等腰三角形的性質(zhì)可得到∠OAD=∠ODA,由圖形翻折變換的性質(zhì)可得到∠CDA=∠EDA,再根據(jù)CD⊥AB即可得出結(jié)論;

2)連接OF,可知OC=BC=OB=OD,由平行線的判定定理可得出OD∥AF,進(jìn)而可得出△FAO是等邊三角形,由等邊三角形的性質(zhì)可判斷出四邊形ODFA是平行四邊形,由OA=OD即可得出結(jié)論.

試題解析:(1)如圖,連接OD,則OA=OD,

∴∠OAD=∠ODA,

∵△AED△ACD對(duì)折得到,

∴∠CDA=∠EDA,

∵CD⊥AB,

∴∠CAD+∠CDA=∠ODA+∠EDA=90°,D點(diǎn)在半圓O上,

∴DE是半圓的切線;

2)四邊形ODFA是菱形,

如圖,連接OF,

∵CD⊥OB,

∴△OCD是直角三角形,

∴OC=BC=OB=OD,

Rt△OCD中,∠ODC=30°,

∴∠DOC=60°,

∵∠DOC=∠OAD+∠ODA,

∴∠OAD=∠ODA=∠FAD=30°,

∴OD∥AF,∠FAO=60°

∵OF=OA,

∴△FAO是等邊三角形,

∴OA=AF,

∴OD=AF,

四邊形ODFA是平行四邊形,

∵OA=OD,

四邊形ODFA是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠MAN=120°,AC平分∠MAN.B、D分別在射線AN、AM.

(1)在圖1中,當(dāng)∠ABC=ADC=90°時(shí),求證:AD+AB=AC

(2)若把(1)中的條件ABC=ADC=90°”改為∠ABC+ADC=180°,其他條件不變,如圖2所示,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:由絕對(duì)值的意義可知:當(dāng)時(shí), ;當(dāng)時(shí), .利用這一特性,可以幫助我們解含有絕對(duì)值的方程.比如:方程

當(dāng)時(shí),原方程可化為,解得;

當(dāng)時(shí),原方程可化為,解得

所以原方程的解是

1)請(qǐng)補(bǔ)全題目中橫線上的結(jié)論.

2)仿照上面的例題,解方程:

3)若方程有解,則應(yīng)滿足的條件是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,AB=6, ∠BAC=30, ∠BAC的平分線交BC于點(diǎn)D,E,F分別是線段ADAB上的動(dòng)點(diǎn),則BE+EF的最小值是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(背景知識(shí))

數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.

(問(wèn)題情境)

如圖,數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為8,點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒(.

(綜合運(yùn)用)

1)填空:

兩點(diǎn)之間的距離________,線段的中點(diǎn)表示的數(shù)為__________.

②用含的代數(shù)式表示:秒后,點(diǎn)表示的數(shù)為____________;點(diǎn)表示的數(shù)為___________.

③當(dāng)_________時(shí),、兩點(diǎn)相遇,相遇點(diǎn)所表示的數(shù)為__________.

2)當(dāng)為何值時(shí),.

3)若點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),點(diǎn)在運(yùn)動(dòng)過(guò)程中,線段的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:甲:連接AC,作AC的垂直平分線MN分別交ADAC,BCMO,N,連接AN,CM,則四邊形ANCM是菱形.

乙:分別作∠A,∠B的平分線AE,BF,分別交BC,ADEF,連接EF,則四邊形ABEF是菱形.根據(jù)兩人的作法可判斷( )

A. 甲正確,乙錯(cuò)誤 B. 乙正確,甲錯(cuò)誤

C. 甲、乙均正確 D. 甲、乙均錯(cuò)誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DEABE,DFACF,若BDCD,BECF,則下列結(jié)論:①DEDF;②AD平分∠BAC;③AEAD;④ACAB2BE中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,AD=3,動(dòng)點(diǎn)P滿足,則點(diǎn)PA、B兩點(diǎn)距離之和PA+PB的最小值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】瑞瑞有一個(gè)小正方體,6個(gè)面上分別畫有平行四邊形、圓、等腰梯形、菱形、等邊三角形和直角梯形這6個(gè)圖形.拋擲這個(gè)正方體一次,向上一面的圖形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的概率是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案