如圖,⊙O與AB相切于點A,BO與⊙O交于點C,∠B=26°,則∠OCA=    度.
【答案】分析:連接OA;根據(jù)切線的性質(zhì)和三角形內(nèi)角和定理求解.
解答:解:連接OA.
∵⊙O與AB相切于點A,
∴∠OAB=90°.
∵∠B=26°,
∴∠AOB=180°-∠OAB-∠B=180°-90°-26°=64°.
∵OA=OC,
∴∠1=∠2=(180°-∠AOB)=(180°-64°)=58°.
故∠2=58°,即∠OCA=58°.
點評:此題主要考查切線的性質(zhì),三角形的內(nèi)角和定理及等腰三角形的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O與AB相切于點A,BO與⊙O交于點C,∠B=26°,則∠OCA=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖,⊙O與AB相切于A,BO與⊙O交于點C,∠BAC=25°,則∠B=
40
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖:⊙O與AB相切于點A,BO與⊙O交于點C,∠BAC=24°,則∠B等于
42°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•張家口一模)如圖:⊙O與AB相切于點A,BO與⊙O交于點C,∠BAC=30°,則∠B等于( 。

查看答案和解析>>

同步練習冊答案