【題目】已知二次函數(shù)y=ax2+bx+c(a、b、c都是常數(shù),且a≠0)的圖象與x軸交于點(diǎn)(﹣2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點(diǎn)在(0,2)的下方,下列結(jié)論:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】D
【解析】
根據(jù)待定系數(shù)法、方程根與系數(shù)的關(guān)系等知識(shí)和數(shù)形結(jié)合能力仔細(xì)分析即可解.
①由y=ax2+bx+c與X軸的交點(diǎn)坐標(biāo)為(-2,0)得:
a×(-2)2+b×(-2 )+c=0,即4a-2b+c=0,
所以正確;
②由圖象開口向下知a<0,
由y=ax2+bx+c與X軸的另一個(gè)交點(diǎn)坐標(biāo)為(x1,0 ),且1<x1<2,
則該拋物線的對(duì)稱軸為x==,即<1,
由a<0,兩邊都乘以a得:b>a,
∵a<0,對(duì)稱軸x=-<0,
∴b<0,
∴a<b<0.故正確;
③由一元二次方程根與系數(shù)的關(guān)系知x1x2=,結(jié)合a<0得2a+c>0,所以結(jié)論正確,
④由4a-2b+c=0得2ab=,而0<c<2,
∴1<,
∴-1<2a-b<0∴2a-b+1>0,所以結(jié)論正確.
故正確結(jié)論的個(gè)數(shù)是4個(gè).
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC外接圓上的動(dòng)點(diǎn),且B,D位于AC的兩側(cè),DE⊥AB,垂足為E,DE的延長線交此圓于點(diǎn)F.BG⊥AD,垂足為G,BG交DE于點(diǎn)H,DC,F(xiàn)B的延長線交于點(diǎn)P,且PC=PB.
(1)求證:BG∥CD;
(2)設(shè)△ABC外接圓的圓心為O,若AB=DH,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,AD⊥CD于點(diǎn)D.E是AB延長線上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,BM是AC邊上的中線,點(diǎn)D,E分別在邊AC和BC上,DB=DE,DE與BM相交于點(diǎn)N,EF⊥AC于點(diǎn)F,以下結(jié)論:
①∠DBM=∠CDE;②S△BDE<S四邊形BMFE;③CD·EN=BN·BD;④AC=2DF.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長線交于點(diǎn)D,DE⊥AD且與AC的延長線交于點(diǎn)E.
(1)求證:DC=DE;
(2)若,AB=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AOOM,OA=8,點(diǎn)B為射線OM上的一個(gè)動(dòng)點(diǎn),分別以OB、AB為直角邊,B為直角頂點(diǎn),在OM兩側(cè)作等腰Rt△OBF、等腰Rt△ABE,連接EF交OM于P點(diǎn),當(dāng)點(diǎn)B在射線OM上移動(dòng)時(shí),PB的長度是 ( )
A. 3.6 B. 4 C. 4.8 D. PB的長度隨B點(diǎn)的運(yùn)動(dòng)而變化
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com