【題目】如圖,四邊形ABCD中,ABCD,ABCDACDB

1)求證:ADBC;

2)若EF,G,H分別是AB,CDAC,BD的中點(diǎn),求證:線段EF與線段GH互相平分.

【答案】1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

【解析】

1)由平行四邊形的性質(zhì)易得ACBMBD,∠BDC=∠M=∠ACD,由全等三角形判定定理及性質(zhì)得出結(jié)論;

2)連接EH,HFFG,GE,E,FG,H分別是ABCD,AC,BD的中點(diǎn),易得四邊形HFGE為平行四邊形,由平行四邊形的性質(zhì)及(1)結(jié)論得HFGE為菱形,易得EFGH互相垂直平分.

證明:(1)過(guò)點(diǎn)BBMACDC的延長(zhǎng)線于點(diǎn)M,如圖1,

ABCD

∴四邊形ABMC為平行四邊形.

ACBMBD,∠BDC=∠M=∠ACD

ACDBDC中,

,

∴△ACD≌△BDCSAS),

ADBC;

2)連接EHHF,FGGE,如圖2

E,F,GH分別是AB,CDAC,BD的中點(diǎn),

HEAD,且HEADFGAD,且FG,

∴四邊形HFGE為平行四邊形,

由(1)知,ADBC

HEEG,

HFGE為菱形,

EFGH互相垂直平分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品現(xiàn)在售價(jià)為每件60元,每星期可賣出300件,市場(chǎng)調(diào)查反映:調(diào)整價(jià)格,每件漲價(jià)1元,每星期要少賣出10件;每件降價(jià)1元,每星期可多賣出20.已知商品的進(jìn)價(jià)為每件40.

1)設(shè)每件降價(jià)x元,每星期的銷售利潤(rùn)為y元;

請(qǐng)寫出yx之間的函數(shù)關(guān)系式;

確定x的值,使利潤(rùn)最大,并求出最大利潤(rùn);

2)若漲價(jià)x元,則x= 元時(shí),利潤(rùn)y的最大值為 元(直接寫出答案,不必寫過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜有限公司一年四季都有大量新鮮蔬菜銷往全國(guó)各地,近年來(lái)它的蔬菜產(chǎn)值不斷增加,2014年蔬菜的產(chǎn)值是640萬(wàn)元,2016年產(chǎn)值達(dá)到1000萬(wàn)元.

1)求2015年、2016年蔬菜產(chǎn)值的平均增長(zhǎng)率是多少?

2)若2017年蔬菜產(chǎn)值繼續(xù)穩(wěn)定增長(zhǎng)(即年增長(zhǎng)率與前兩年的年增長(zhǎng)率相同),那么請(qǐng)你估計(jì)2017年該公司的蔬菜產(chǎn)值達(dá)到多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個(gè)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°ADBC于點(diǎn)D,點(diǎn)OAC邊上一點(diǎn),連接BOADF,OEOBBC邊于點(diǎn)E

(1)求證:△ABF∽△COE;

(2)當(dāng)O為AC邊中點(diǎn), 時(shí),如圖2,求的值;

(3)當(dāng)O為AC邊中點(diǎn), 時(shí),請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班將舉行“數(shù)學(xué)知識(shí)競(jìng)賽”活動(dòng),班長(zhǎng)安排小明購(gòu)買獎(jiǎng)品,下面兩圖是小明買回獎(jiǎng)品時(shí)與班長(zhǎng)的對(duì)話情境:

請(qǐng)根據(jù)上面的信息,解決問(wèn)題:

(1)試計(jì)算兩種筆記本各買了多少本?

(2)請(qǐng)你解釋:小明為什么不可能找回68元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, ,點(diǎn)D, E分別在上,且,將沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處,如果 ,那么CD的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將平行四邊形 ABCD 沿對(duì)角線 BD 折疊,使點(diǎn) A 落在A′處,若∠1=∠250°,則∠A′的度數(shù)為(

A.100°B.105°C.110°D.115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,如圖1,將線段AB平移至線段CD,連接AC、BD

1)已知A(﹣30)、B(﹣2,﹣2),點(diǎn)Cy軸的正半軸上,點(diǎn)D在第一象限內(nèi),且三角形ACO的面積是6,求點(diǎn)CD的坐標(biāo);

2)如圖2,在平面直角坐標(biāo)系中,已知一定點(diǎn)M1,0),兩個(gè)動(dòng)點(diǎn)Ea,2a+1)、Fb,﹣2b+3).

請(qǐng)你探索是否存在以兩個(gè)動(dòng)點(diǎn)E、F為端點(diǎn)的線段EF平行于線段OM且等于線段OM,若存在,求出點(diǎn)EF兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

當(dāng)點(diǎn)EF重合時(shí),將該重合點(diǎn)記為點(diǎn)P,另當(dāng)過(guò)點(diǎn)E、F的直線平行于x軸時(shí),是否存在△PEF的面積為2?若存在,求出點(diǎn)E、F兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案