【題目】如圖,正方形EFGH的四個頂點分別在正方形ABCD的四條邊上,若正方形EFGH與正方形ABCD的相似比為,則)的值為_____.

【答案】

【解析】

根據(jù)題意,由AAS證明△AEH≌△BFE,則BE=AH,根據(jù)相似比為,令EH=,AB=,設(shè)AE=AH=,在直角三角形AEH中,利用勾股定理,即可求出的值,即可得到答案.

解:在正方形EFGH與正方形ABCD中,

A=B=90°,EF=EH,∠FEH=90°,

∴∠AEH+AHE=90°,∠BEF+AEH=90°,

∴∠AHE=BEF

∴△AEH≌△BFEAAS),

BE=AH,

,

EH=,AB=,

在直角三角形AEH中,設(shè)AE=,AH=AB-AE=

由勾股定理,得,

,

解得:

,

,

;

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,邊上的一點,連接,邊上的中點,過點的平行線交的延長線于點,且,連接.

1)求證:;

2)如果,試判斷四邊形的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+3經(jīng)過點A(﹣1,0),B3,0),與y軸交于點C.點DxDyD)為拋物線上一個動點,其中1xD3.連接AC,BC,DBDC

1)求該拋物線的解析式;

2)當BCD的面積等于AOC的面積的2倍時,求點D的坐標;

3)在(2)的條件下,若點Mx軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在圓O上,BECD垂足為E,CB平分∠ABE,連接BC

1)求證:CD為⊙O的切線;

2)若cosCAB,CE,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,以為直徑作.

1)證明:的切線;

2)若,連接,求陰影部分的面積.(結(jié)果保留)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)a,b滿足ab1,a2ab+10,當2≤x≤3時,二次函數(shù)yax12+1a≠0)的最大值是3,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,y軸上一點A0,2),在x軸上有一動點B,連結(jié)AB,過B點作直線lx軸,交AB的垂直平分線于點P(x,y),在B點運動過程中,P點的運動軌跡是________,y關(guān)于x的函數(shù)解析式是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系 xOy 中,拋物線 y=ax2﹣4ax+3a﹣2(a≠0)與 x軸交于 A,B 兩(點 A 在點 B 左側(cè)).

(1)當拋物線過原點時,求實數(shù) a 的值;

(2)①求拋物線的對稱軸;

②求拋物線的頂點的縱坐標(用含 a 的代數(shù)式表示);

(3)當 AB≤4 時,求實數(shù) a 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案