【題目】在平面直角坐標(biāo)系 xOy 中,拋物線(xiàn) y=ax2﹣4ax+3a﹣2(a≠0)與 x軸交于 A,B 兩(點(diǎn) A 在點(diǎn) B 左側(cè)).
(1)當(dāng)拋物線(xiàn)過(guò)原點(diǎn)時(shí),求實(shí)數(shù) a 的值;
(2)①求拋物線(xiàn)的對(duì)稱(chēng)軸;
②求拋物線(xiàn)的頂點(diǎn)的縱坐標(biāo)(用含 a 的代數(shù)式表示);
(3)當(dāng) AB≤4 時(shí),求實(shí)數(shù) a 的取值范圍.
【答案】(1)a=;(2)①x=2;②拋物線(xiàn)的頂點(diǎn)的縱坐標(biāo)為﹣a﹣2;(3)a 的范圍為 a<﹣2 或 a≥.
【解析】
(1)把原點(diǎn)坐標(biāo)代入 y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把拋物線(xiàn)解析式配成頂點(diǎn)式,即可得到拋物線(xiàn)的對(duì)稱(chēng)軸和拋物線(xiàn)的頂點(diǎn)的縱坐標(biāo);(3)設(shè) A(m,0),B(n,0),利用拋物線(xiàn)與 x 軸的交點(diǎn)問(wèn)題,則 m、n 為方程 ax2﹣4ax+3a﹣2=0 的兩根,利用判別式的意義解得 a>0 或 a<﹣2,再利用根與系數(shù)的關(guān)系得到 m+n=4,mn= ,然后根據(jù)完全平方公式利用 n﹣m≤4 得到(m+n)2﹣4mn≤16,所以 42﹣4≤16,接著解關(guān)于a 的不等式,最后確定a的范圍.
(1)把(0,0)代入 y=ax2﹣4ax+3a﹣2 得 3a﹣2=0,解得 a=;
(2)①y=a(x﹣2)2﹣a﹣2, 拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn) x=2;
②拋物線(xiàn)的頂點(diǎn)的縱坐標(biāo)為﹣a﹣2;
(3)設(shè) A(m,0),B(n,0),
∵m、n 為方程 ax2﹣4ax+3a﹣2=0 的兩根,
∴△=16a2﹣4a(3a﹣2)>0,解得 a>0 或 a<﹣2,
∴m+n=4,mn=, 而 n﹣m≤4,
∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,
∴42﹣4 ≤16,
即≥0,解得 a≥或 a<0.
∴a 的范圍為 a<﹣2 或 a≥.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線(xiàn)交AD于點(diǎn)E,連接BD,CD.
(1)求證:BD=CD;
(2)請(qǐng)判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖所示,在中,.
(1)作的平分線(xiàn)交于點(diǎn);
(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法.)
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】舉重比賽的總成績(jī)是選手的挺舉與抓舉兩項(xiàng)成績(jī)之和,若其中一項(xiàng)三次挑戰(zhàn)失敗,則該項(xiàng)成績(jī)?yōu)?0,甲、乙是同一重量級(jí)別的舉重選手,他們近三年六次重要比賽的成績(jī)?nèi)缦拢▎挝唬汗铮?/span>
如果你是教練,要選派一名選手參加國(guó)際比賽,那么你會(huì)選擇_____(填“甲” 或“乙”),理由是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=(x>0)的圖象與一次函數(shù)y=ax﹣2(a≠0)的圖象交于點(diǎn)A(3,n).
(1)求實(shí)數(shù)a的值;
(2)設(shè)一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點(diǎn)B,若點(diǎn)C在y軸上,且S△ABC=2S△AOB,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象所示,對(duì)稱(chēng)軸為x=1,給出下列結(jié)論:①abc>0;②當(dāng)x>2時(shí),y>0;③3a+c>0;④3a+b>0.其中正確的結(jié)論有( )
A. ①② B. ①④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,點(diǎn)O是AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線(xiàn)MN∥BC,設(shè)MN交∠BCA的平分線(xiàn)于E,交∠BCA的外角平分線(xiàn)于F.
(1)請(qǐng)猜測(cè)OE與OF的大小關(guān)系,并說(shuō)明你的理由;
(2)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?寫(xiě)出推理過(guò)程;
(3)點(diǎn)O運(yùn)動(dòng)到何處且△ABC滿(mǎn)足什么條件時(shí),四邊形AECF是正方形?(寫(xiě)出結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠ACB=90°,∠BAC=30°,點(diǎn)C為等邊△DEF的邊DE的中點(diǎn).
(1)如圖1,當(dāng)DE與BC在同一條直線(xiàn)上時(shí),已知,求的值;
(2)如圖2,當(dāng)DE與AC在同一條直線(xiàn)上時(shí),分別連接AF,BD,試判斷BD和AF的位置關(guān)系并說(shuō)明理由;
(3)如圖3,當(dāng)DE與△ABC的邊均不在一條直線(xiàn)上時(shí),分別連接AF,BD,求證:∠FAC=∠CBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若反比例函數(shù)y=(k≠0)的圖象過(guò)點(diǎn)(2,1),則這個(gè)函數(shù)的圖象還經(jīng)過(guò)的點(diǎn)是( )
A. (﹣2,1) B. (﹣l,2) C. (﹣2,﹣1) D. (1,﹣2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com