sin60°+sin45°

 

答案:
解析:

原式=

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算或化簡(jiǎn):
(1)
3
cos30°+
2
sin45°;
(2)
tan45°-cos60°
sin60°
•tan 30°;
(3)(sin60°+cos 45°)(sin 60°-cos 45°);
(4)6tan230°-
3
sin 60°-2sin 45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

提出問題:小明是個(gè)愛思考的學(xué)生,在學(xué)習(xí)了三角函數(shù)后小明發(fā)現(xiàn):
sin90°=1,sin45°=
2
2
,90°是45°的兩倍,但三角函數(shù)值卻是
2
倍;
sin30°=
 
,sin60°=
 
,60°是30°的兩倍,但三角函數(shù)值卻是
 
倍,
考慮到cos45°,cos30°的三角函數(shù)值,估計(jì)sin2α=2sinαcosα,代入檢驗(yàn)發(fā)現(xiàn)以上兩組角度都符合.
解決問題:那么如何證明sin2α=2sinαcosα呢?
小明思考再三,發(fā)現(xiàn)在△ABC中(圖2),高AD=ABsinB,可得S△ABC=
1
2
BC•ABsinB

利用這個(gè)結(jié)論證明上述命題結(jié)論.聰明的你也能解決這個(gè)問題嗎?
如圖2,在△ABC中,AB=AC,AD⊥BC于D,設(shè)∠BAD=α,求證:sin2α=2sinαcosα.
推廣應(yīng)用:解決了以上問題后,小明思考再三,終于發(fā)現(xiàn)了sin(α+β)與sinα,cosα,sinβ,cosβ的關(guān)系,
你能結(jié)合圖3證明出自己所猜想的sin(α+β)與sinα,cosα,sinβ,cosβ的關(guān)系嗎?
并利用上述關(guān)系求出sin75°的值(保留根號(hào)).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

初中我們學(xué)過了正弦 余弦的定義,例如sin30°=
12
,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°,根據(jù)如圖,設(shè)計(jì)一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b,BC=a
(1)用b,c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計(jì)算:cos30°+tan45°•sin60°;
(2)已知:tan60°•sinα=
3
2
,求銳角α.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列各式中正確的個(gè)數(shù)是( 。
cos
2
2
=45°
②tan60°=cot30°③sinα=
1
2
=30°
tan60°=
sin60°
cos60°

查看答案和解析>>

同步練習(xí)冊(cè)答案