【題目】2018年非洲豬瘟疫情暴發(fā)后,專家預(yù)測,2019年我市豬肉售價將逐月上漲,每千克豬肉的售價y1(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關(guān)系,如下表所示.每千克豬肉的成本y2(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售價y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1與x之間的函數(shù)關(guān)系式.
(2)求y2與x之間的函數(shù)關(guān)系式.
(3)設(shè)銷售每千克豬肉所獲得的利潤為w(元),求w與x之間的函數(shù)關(guān)系式,哪個月份銷售每千克豬肉所第獲得的利潤最大?最大利潤是多少元?
【答案】(1)y1=2x+6;(2)y2=x2﹣x+;(3)w=﹣x2+x﹣,7月份銷售每千克豬肉所第獲得的利潤最大,最大利潤是77元7.
【解析】
(1)設(shè)與x之間的函數(shù)關(guān)系式為,將(3,12)(4,14)代入解方程組即可得到結(jié)論;
(2)由題意得到拋物線的頂點坐標(biāo)為(3,9),設(shè)與x之間的函數(shù)關(guān)系式為:=,將(5,10)代入=得=10,解方程即可得到結(jié)論;
(3)由題意得到w==2x+6+x=+x,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
(1)設(shè)y1與x之間的函數(shù)關(guān)系式為y1=kx+b,
將(3,12)(4,14)代入y1得,,
解得:,
∴y1與x之間的函數(shù)關(guān)系式為:y1=2x+6;
(2)由題意得,拋物線的頂點坐標(biāo)為(3,9),
∴設(shè)y2與x之間的函數(shù)關(guān)系式為:y2=a(x﹣3)2+9,
將(5,10)代入y2=a(x﹣3)2+9得a(5﹣3)2+9=10,
解得:a=,
∴y2=(x﹣3)2+9=x2﹣x+;
(3)由題意得,w=y1﹣y2=2x+6﹣x2+x﹣=﹣x2+x﹣,
∵﹣<0,
∴w由最大值,
∴當(dāng)x=﹣=﹣=7時,w最大=﹣×72+×7﹣=7span>.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(﹣6,0)、B(2,0)、C(0,6)三點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點P作y軸的垂線,垂足為點E,連接AE.
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標(biāo);
(2)如果點P的坐標(biāo)為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;
(3)過點P(﹣3,m)作x軸的垂線,垂足為點F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為點P,求出P的坐標(biāo).(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD和四邊形位似,位似比=2,四邊形A′B′C′D′和四邊形位似,位似比=1.四邊形和四邊形ABCD是位似圖形嗎?位似比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為R的圓內(nèi),ABCDEF是正六邊形,EFGH是正方形.
(1)求正六邊形與正方形的面積比;(2)連接OF,OG,求∠OGF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A1,A2,A3…,An在x軸正半軸上,點C1,C2,C3,…,在y軸正半軸上,點B1,B2,B3,…,Bn在第一象限角平分線OM上,OB1=B1B2=B1B3=…=Bn﹣1Bn=a,A1B1⊥B1C1,A2B2⊥B2C2,A3B3⊥B3C3,…,,…,則第n個四邊形的面積是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,⊙M的半徑為2,圓心M的坐標(biāo)為(3,4),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關(guān)于原點O對稱,則AB的最小值為( 。
A. 3B. 4C. 6D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)(操作發(fā)現(xiàn))
如圖①,將△ABC繞點A順時針旋轉(zhuǎn)60°,得到△ADE,連接BD,則∠ABD=____度;
(2)(類比探究)
如圖②,在等邊三角形ABC內(nèi)任取一點P,連接PA,PB,PC,求證:以PA,PB,PC的長為三邊必能組成三角形:
(3)(解決問題)
如圖③,在邊長為的等邊三角形ABC內(nèi)有一點P,∠APC=90°,∠BPC=120°,求△APC的面積;
(4)(拓展應(yīng)用)
圖④是A,B,C三個村子位置的平面圖,經(jīng)測量AC=4,BC=5,∠ACB=30°,P為△ABC內(nèi)的一個動點,連接PA,PB,PC,求PA+PB+PC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形的邊上一點,下列條件中:①;②;③;④;⑤.其中能使的有( )
A. ①②B. ①②③
C. ①②③④D. ①②③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com