【題目】函數(shù)y=﹣(x12+1x≥3)的最大值是_____

【答案】-3

【解析】

根據(jù)函數(shù)圖象自變量取值范圍得出對(duì)應(yīng)y的值,即是函數(shù)的最值.

解:函數(shù)y-x-12+1,

對(duì)稱軸為直線x1,當(dāng)x1時(shí),yx的增大而減小,

當(dāng)x3時(shí),y-3,

函數(shù)y-x-12+1x≥3)的最大值是-3

故答案為-3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了節(jié)約用水,某市決定調(diào)整居民用水收費(fèi)方法,規(guī)定:

如果每戶每月水不超過(guò)噸,每噸水收費(fèi)元.

如果每戶每月用水超過(guò)噸,則超過(guò)部分每噸水收費(fèi)元.

小紅看到這種收費(fèi)方法后,想算算她家每月的水費(fèi),但是她不清楚家里每月的用水是否超過(guò)噸.

)如果小紅家每月用水噸,水費(fèi)是多少?如果每月用水噸,水費(fèi)是多少?

)如果字母表示小紅家每月用水的噸數(shù),那么小紅家每月的水費(fèi)該如何用的代數(shù)式表示呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a-b=1,ab=-2,則(a+1)(b-1)=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)落在射線上,點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)落在射線上,點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)落在射線上,…,連接、、…,以此作法,則=______度.(用含的代數(shù)式表示, 為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)報(bào)道,2015年某市城鎮(zhèn)非私營(yíng)單位就業(yè)人員年平均工資超過(guò)60500元,將數(shù)60500用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次測(cè)驗(yàn)中,初三(1)班的英語(yǔ)考試的平均分記為a分,所有高于平均分的學(xué)生的成績(jī)減去平均分的分?jǐn)?shù)之和記為m,所有低于平均分的學(xué)生的成績(jī)與平均分相差的分?jǐn)?shù)的絕對(duì)值的和記為n,則mn的大小關(guān)系是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地的一種綠色蔬菜,在市場(chǎng)上若直接銷售,每噸利潤(rùn)為1000元,經(jīng)粗加工后銷售,每噸利潤(rùn)4000元,經(jīng)精加工后銷售, 每噸利潤(rùn)為7000元.當(dāng)?shù)匾患夜粳F(xiàn)有這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對(duì)蔬菜進(jìn)行粗加工,每天可加工16噸, 如果對(duì)蔬菜進(jìn)行精加工,每天可加工6噸,但每天兩種方式不能同時(shí)進(jìn)行.受季節(jié)等條件的限制,必須用15天時(shí)間將這批蔬菜全部銷售或加工完畢.為此,公司研制了三種方案:

方案1:將蔬菜全部進(jìn)行粗加工;

方案2:盡可能地對(duì)蔬菜進(jìn)行精加工,沒(méi)來(lái)得及加工的蔬菜,在市場(chǎng)上直接出售;

方案3:將一部分蔬菜進(jìn)行精加工, 其余蔬菜進(jìn)行粗加工,并剛好15天完成.

如果你是公司經(jīng)理,你會(huì)選擇哪一種方案? 請(qǐng)通過(guò)計(jì)算說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)F是AC邊上一點(diǎn),延長(zhǎng)BC到點(diǎn)D,使BF=DF,若CD=CF,求證:

(1)點(diǎn)F為AC的中點(diǎn);
(2)過(guò)點(diǎn)F作FE⊥BD,垂足為點(diǎn)E,請(qǐng)畫出圖形并證明BD=6CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,CDAB邊上的中線,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE. 請(qǐng)你探究:

(1)當(dāng)∠BAC為直角時(shí),直接寫出線段CECD之間的數(shù)量關(guān)系;

(2)當(dāng)∠BAC為銳角或鈍角時(shí),(1)中的上述數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案