【題目】如圖,∠AOB=90°,C、D是AB三等分點(diǎn),AB分別交OC、OD于點(diǎn)E、F,求證:AE=BF=CD.

【答案】見解析

【解析】試題分析:

如圖,由題意易得AC=CD=DB,故只需證AC=AE,BD=BF就可證得結(jié)論了;連接AC、BD,通過角度計(jì)算證∠ACO=∠AEC,可得△AEC是等腰三角形,從而得AE=AC;同理可得BF=BD,就可得結(jié)論;

試題解析:

如圖,連接AC、BD,

∵∠AOB=90°,點(diǎn)C、D的三等分點(diǎn),

∴AC=CD=BD,∠AOC=∠COD=∠BOD=30°

∴∠CAE=30°,

∵OA=OC,

∴∠OCA=∠OAC=75°,

∴∠AEC=180°-30°-75°=75°=∠OCA,

∴AE=AC,

同理可得BF=BD,

∴AE=BF=CD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,邊長(zhǎng)為a的正方形中有一個(gè)邊長(zhǎng)為b的小正方形,如圖2所示是由圖1中陰影部分拼成的一個(gè)正方形.

1)設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2.請(qǐng)直接用含a,b的代數(shù)式表示S1S2;

2)請(qǐng)寫出上述過程所揭示的乘法公式;

3試?yán)眠@個(gè)公式計(jì)算:(2+1)(22+1)(24+1)(28+1+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)圓錐形和煙囪帽的底面直徑是40cm,母線長(zhǎng)是120cm,需要加工這樣的一個(gè)煙囪帽,請(qǐng)你畫一畫:

(1)至少需要多少厘米鐵皮(不計(jì)接頭)

(2)如果用一張圓形鐵皮作為材料來制作這個(gè)煙囪帽,那么這個(gè)圓形鐵皮的半徑至少應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB15,AC13,高AD12,則ABC的周長(zhǎng)為(   )

A42 B32 C42 32 D37 33

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知實(shí)數(shù)a、b在數(shù)軸上的位置如圖所示,化簡(jiǎn)=_____________;

(2)已知正整數(shù),滿足,則整數(shù)對(duì)的個(gè)數(shù)是_______________;

(3)ABC,A=50°,BE、CF所在的直線交于點(diǎn)O,BOC的度數(shù)__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為建設(shè)資源節(jié)約型、環(huán)境友好型社會(huì),克服因干旱而造成的電力緊張困難,切實(shí)做好節(jié)能減排工作.某地決定對(duì)居民家庭用電實(shí)行“階梯電價(jià)”,電力公司規(guī)定:居民家庭每月用電量在80千瓦時(shí)以下(80千瓦時(shí),1千瓦時(shí)俗稱1)時(shí),實(shí)行“基本電價(jià)”;當(dāng)居民家庭月用電量超過80千瓦時(shí)時(shí),超過部分實(shí)行“提高電價(jià)”.

(1)小張家今年2月份用電100千瓦時(shí),上繳電費(fèi)68元;5月份用電120千瓦時(shí),上繳電費(fèi)88元.求“基本電價(jià)”和“提高電價(jià)”分別為多少元/千瓦時(shí);

(2)6月份小張家預(yù)計(jì)用電130千瓦時(shí),請(qǐng)預(yù)算小張家6月份應(yīng)上繳的電費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a=0.32,b=32c=,d=,則它們的大小關(guān)系是( 。

A. abcd B. badc C. adcb D. cadb

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠設(shè)計(jì)了一款工藝品,每件成本元,為了合理定價(jià),現(xiàn)投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是元時(shí),每天的銷售量是件,若銷售單價(jià)每降低元,每天就可多售出件,但要求銷售單價(jià)不得低于元.如果降價(jià)后銷售這款工藝品每天能盈利元,那么此時(shí)銷售單價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在直角三角形ABC中,ACB=900,DAB上一點(diǎn),且ACD=B

1)判斷ACD的形狀?并說明理由。

2)你在證明你的結(jié)論過程中應(yīng)用了哪一對(duì)互逆的真命題?

查看答案和解析>>

同步練習(xí)冊(cè)答案