精英家教網 > 初中數學 > 題目詳情
若正n邊形的一個外角為45°,則n=         
8.

試題分析:根據正多邊形的外角和的特征即可求出多邊形的邊數.
試題解析:n=360°÷45°=8.
【考點】多邊形內角與外角.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,矩形ABCD的對角線AC、BD相交于點O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為菱形;
(2)連接AE、BE,AE與BE相等嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,點A是線段BC上一點,△ABD和△ACE都是等邊三角形.
(1)連結BE,CD,求證:BE=CD;
(2)如圖2,將△ABD繞點A順時針旋轉得到△AB′D′.
①當旋轉角為     度時,邊AD′落在AE上;
②在①的條件下,延長DD’交CE于點P,連接BD′,CD′.當線段AB、AC滿足什么數量關系時,△BDD′與△CPD′全等?并給予證明.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,將矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,且CE與AD相交于點F.
(1)求證:AF=CF;
(2)若AB=4,BC=6,求△AFC的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

閱讀下列材料:
問題:在平面直角坐標系中,一張矩形紙片OBCD按圖1所示放置。已知OB=10,BC=6,
將這張紙片折疊,使點O落在邊CD上,記作點A,折痕與邊OD(含端點)交于點E,與邊OB(含端點)或其延長線交于點F,求點A的坐標.
小明在解決這個問題時發(fā)現(xiàn):要求點A的坐標,只要求出線段AD的長即可,連接OA,設折痕EF所在直線對應的函數表達式為:,于是有,所以在Rt△EOF中,得到,在Rt△AOD中,利用等角的三角函數值相等,就可以求出線段DA的長(如圖1)

請回答:
(1)如圖1,若點E的坐標為,直接寫出點A的坐標;
(2)在圖2中,已知點O落在邊CD上的點A處,請畫出折痕所在的直線EF(要求:尺規(guī)作圖,保留作圖痕跡,不寫做法);
參考小明的做法,解決以下問題:
(3)將矩形沿直線折疊,求點A的坐標;
(4)將矩形沿直線折疊,點F在邊OB上(含端點),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AB=6,BC=8,求四邊形OCED的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

?ABCD中,已知∠B=60°,AB=8cm,BC=6cm,則它的面積等于______cm2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,在四邊形ABCD中,AB∥CD,要使得四邊形ABCD是平行四邊形,應添加的條件是         (只填寫一個條件,不使用圖形以外的字母和線段).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

點A、B、C是平面內不在同一條直線上的三點,點D是平面內任意一點,若A、B、C、D四點恰能構成一個平行四邊形,則在平面內符合這樣條件的點D有(  )
A.1個        B.2個        C.3個        D.4個

查看答案和解析>>

同步練習冊答案