【題目】已知,∠ABC=48°,P是∠ABC內(nèi)一定點(diǎn),D、E分別是射線BA、BC上的點(diǎn),當(dāng)△PDE的周長(zhǎng)最小時(shí),∠DPE的度數(shù)是__________.
【答案】84°
【解析】試題解析:如圖作點(diǎn)P關(guān)于直線AB的對(duì)稱(chēng)點(diǎn)F,作點(diǎn)P關(guān)于直線BC的對(duì)稱(chēng)點(diǎn)G,連接FG交AB于D,交BC于E,則△PDE的周長(zhǎng)最小.
設(shè)∠ABP=∠ABF=x,∠CBP=∠CBG=y,則x+y=48°,
∵BP=BF,
∴∠BPF=∠BFP=(180°-2x)=90°-x.同法可得∠BPG=90°-y,
∴∠FPG=180°-x-y=132°,
∴∠BFP+∠BGP=132°,
∵∠BFG+∠BGF=180°-96°=84°,
∴∠PFG+∠PGF=132°-84°=48°,
∵DF=DP,EP=EG,
∴∠DFP=∠DPF,∠EGP=∠EPG,
∴∠EDP=2∠DFP,∠DEP=2∠EGP,
∴∠PDE+∠PED=96°,
∴∠DPE=180°-96°=84°,
故答案為:84°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由長(zhǎng)度為1個(gè)單位的若干小正方形組成的網(wǎng)格圖中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)在圖中畫(huà)出與△ABC關(guān)于直線l成軸對(duì)稱(chēng)的△AB′C′;
(2)三角形ABC的面積為
(3)以AC為邊作與△ABC全等的三角形(只要作出一個(gè)符合條件的三角形即可);
(4)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….則3+32+33+34+…+32019的末位數(shù)字是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB=AC=2,BC=2,∠A=90°.取一塊含45°角的直角三角尺,將直角頂點(diǎn)放在斜邊BC的中點(diǎn)O處,一條直角邊過(guò)點(diǎn)A(如圖1).三角尺繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),使90°角的兩邊與Rt△ABC的兩邊AB,AC分別相交于點(diǎn)E,F(如圖2).設(shè)BE=x,CF=y.
(1)探究:在圖2中,線段AE與CF有怎樣的大小關(guān)系?證明你的結(jié)論.
(2)求在上述旋轉(zhuǎn)過(guò)程中y與x的函數(shù)表達(dá)式,并寫(xiě)出x的取值范圍.
(3)若將直角三角尺45°角的頂點(diǎn)放在斜邊BC邊的中點(diǎn)O處,一條直角邊過(guò)點(diǎn)A(如圖3).三角尺繞O點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn),使45°角的兩邊與Rt△ABC的兩邊AB,AC分別相交于點(diǎn)E,F(如圖4).在三角尺繞點(diǎn)O旋轉(zhuǎn)的過(guò)程中,△OEF是否能成為等腰三角形?若能,直接寫(xiě)出△OEF為等腰三角形時(shí)x的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)花都?xì)庀笈_(tái)“天氣預(yù)報(bào)”報(bào)道,今天的最低氣溫是17℃,最高氣溫是25℃,則今天氣溫t(℃)的范圍是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果點(diǎn)A的坐標(biāo)為(a2+1,﹣1﹣b2),那么點(diǎn)A在第( 。┫笙蓿
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在ABCD中,分別以AB,AD為邊向外作等邊△ABE,△ADF,延長(zhǎng)CB交AE于點(diǎn)G,點(diǎn)G在點(diǎn)A,E之間,連接CG,CF,則下列結(jié)論不一定正確的是( )
A. △CDF≌△EBC
B. ∠CDF=∠EAF
C. CG⊥AE
D. △ECF是等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面我們做一次折疊活動(dòng):
第一步,在一張寬為2的矩形紙片的一端,利用圖(1)的方法折出一個(gè)正方形,然后把紙片展平,折痕為MC;
第二步,如圖(2),把這個(gè)正方形折成兩個(gè)相等的矩形,再把紙片展平,折痕為FA;
第三步,折出內(nèi)側(cè)矩形FACB的對(duì)角線AB,并將AB折到圖(3)中所示的AD處,折痕為AQ.
根據(jù)以上的操作過(guò)程,完成下列問(wèn)題:
(1)求CD的長(zhǎng).
(2)請(qǐng)判斷四邊形ABQD的形狀,并說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)參加“獻(xiàn)愛(ài)心”活動(dòng),買(mǎi)了2元一注的愛(ài)心福利彩票5注,則“小明中獎(jiǎng)”的事件為 事件(填“必然”或“不可能”或“隨機(jī)”).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com