【題目】如圖,已知BE平分∠ABC,∠CBE=25°,∠BED=25°,∠C=30°,求∠ADE與∠BEC的度數(shù).

【答案】∠ADE=50°;∠BEC=125°.

【解析】

根據(jù)平分線的定義得到∠ABC=2CBE=50°,再根據(jù)三角形內(nèi)角和定理得到∠BEC=180°-C-CBE=125°,由于∠CBE=BED=25°,根據(jù)平行線的判定得到DEBC,然后根據(jù)平行線的性質(zhì)得∠ADE=ABC=50°

BE平分∠ABC,∠CBE=25°,

∴∠ABC=2CBE=50°

∵∠C=30°,

∴∠BEC=180°-C-CBE=125°,

∵∠CBE=25°,∠BED=25°

∴∠CBE=BED,

DEBC,

∴∠ADE=ABC=50°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣2,0),且tan∠ACO=2.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠承接了一批紙箱加工任務(wù),用如圖1所示的長方形和正方形紙板(長方形的寬與正方形的邊長相等)加工成如圖所示的豎式與橫式兩種無蓋的長方形紙箱.(加工時接縫材料不計)

若該廠購進正方形紙板1000張,長方形紙板2000張.問豎式紙盒,橫式紙盒各加工多少個,恰好能將購進的紙板全部用完;

該工廠某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時,a的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ACBC2,∠C90°,將一塊等腰三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CBD、E兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況,研究:

1)三角板繞點P旋轉(zhuǎn),觀察線段PDPE之間有什么數(shù)量關(guān)系?并結(jié)合圖②說明理由.

2)三角板繞點P旋轉(zhuǎn),△PCE是否能成為等腰三角形?若能,指出所有情況(即寫出△PCE為等腰三角形時BE的長);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個有進水管與出水管的容器,從某時刻開始的3分內(nèi)只進水不出水,在隨后的9分內(nèi)既進水又出水,每分的進水量和出水量都是常數(shù).容器內(nèi)的水量y(單位:升)與時間x(單位:分)之間的關(guān)系如圖所示.當容器內(nèi)的水量大于5升時,求時間x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式x2-4y2-2x+4y,細心觀察這個式子就會發(fā)現(xiàn)前兩項符合平方差公式,后兩項可提取公因式,前后兩部分分別分解因式后會產(chǎn)生公因式然后提取公因式就可以完成整個式子的分解因式,過程為x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).這種分解因式的方法叫分組分解法,利用這種方法解決下列問題

(1)分解因式a2-4ab2+4;

(2)ABC三邊ab、c滿足a2abacbc=0,試判斷ABC的形狀

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,某市水費實行階梯式計量水價.每戶每月用水量不超過25噸,收

費標準為每噸a元;若每戶每月用水量超過25噸時,其中前25噸還是每噸a元,超出的部

分收費標準為每噸b元.下表是小明家一至四月份用水量和繳納水費情況.根據(jù)表格提供的數(shù)

據(jù),回答:

月份

用水量(噸)

16

18

30

35

水費(元)

32

36

65

80

1a=________;b=________;

2)若小明家五月份用水32噸,則應(yīng)繳水費   元;

3)若小明家六月份應(yīng)繳水費102.5元,則六月份他們家的用水量是多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線l1:y=﹣x+n過點A(﹣1,3),雙曲線C:y= (x>0),過點B(1,2),動直線l2:y=kx﹣2k+2(常數(shù)k<0)恒過定點F.

(1)求直線l1 , 雙曲線C的解析式,定點F的坐標;
(2)在雙曲線C上取一點P(x,y),過P作x軸的平行線交直線l1于M,連接PF.求證:PF=PM.
(3)若動直線l2與雙曲線C交于P1 , P2兩點,連接OF交直線l1于點E,連接P1E,P2E,求證:EF平分∠P1EP2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角三角形ABC的邊AB和AC上的高線CE和BF相交于點D.請寫出圖中的一對相似三角形,如

查看答案和解析>>

同步練習冊答案