(2001•黑龍江)如圖,將△ADE繞正方形ABCD的頂點(diǎn)A順時針旋轉(zhuǎn)90°,得△ABF,連接EF交AB于H,則下列結(jié)論錯誤的是( )
A.AE⊥AF
B.EF:AF=:1
C.AF2=FH•FE
D.FB:FC=HB:EC
【答案】分析:由旋轉(zhuǎn)得到△AFB≌△AED,根據(jù)相似三角對應(yīng)邊的比等于相似比,即可求得.
解答:解:由題意知,△AFB≌△AED
∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.
∴AE⊥AF,所以A正確;
∴△AEF是等腰直角三角形,有EF:AF=:1,所以B正確;
∵HB∥EC,
∴△FBH∽△FCE,
∴FB:FC=HB:EC,所以D正確.
∵△AEF與△AHF不相似,
∴AF2=FH•FE不正確.
故選C.
點(diǎn)評:本題利用了正方形的性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2001•黑龍江)如圖,在同一直角坐標(biāo)系內(nèi),直線l1:y=(k-2)x+k,和l2:y=kx的位置可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2001•黑龍江)如圖,在平行四邊形ABCD中,AB=4cm,BC=1cm,E是CD邊上一動點(diǎn),AE、BC的延長線交于點(diǎn)F.設(shè)DE=x(cm),BF=y(cm).
(1)求y(cm)與x(cm)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)畫出此函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(2001•黑龍江)如圖,直徑為13的⊙O′經(jīng)過原點(diǎn)O,并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)求線段OA、OB的長;
(2)已知點(diǎn)C在劣弧OA上,連接BC交OA于D,當(dāng)OC2=CD•CB時,求C點(diǎn)的坐標(biāo);
(3)在(2)問的條件下,在⊙O′上是否存在點(diǎn)P,使S△POD=S△ABD?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《四邊形》(03)(解析版) 題型:解答題

(2001•黑龍江)如圖,直徑為13的⊙O′經(jīng)過原點(diǎn)O,并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)求線段OA、OB的長;
(2)已知點(diǎn)C在劣弧OA上,連接BC交OA于D,當(dāng)OC2=CD•CB時,求C點(diǎn)的坐標(biāo);
(3)在(2)問的條件下,在⊙O′上是否存在點(diǎn)P,使S△POD=S△ABD?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2001•黑龍江)拋物線y=ax2+bx+c經(jīng)過點(diǎn)(1,0),(-1,-6),(2,6),則該拋物線與y軸交點(diǎn)的縱坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊答案