如圖,直線分別交軸,軸于兩點(diǎn),以為邊作矩形,為的中點(diǎn).以,為斜邊端點(diǎn)作等腰直角三角形,點(diǎn)在第一象限,設(shè)矩形與重疊部分的面積為.
(1)求點(diǎn)的坐標(biāo);
(2)當(dāng)值由小到大變化時(shí),求與的函數(shù)關(guān)系式;
(3)若在直線上存在點(diǎn),使等于,求出的取值范圍;
(4)在值的變化過程中,若為等腰三角形,請直接寫出所有符合條件的值.
解: (1)作于,則.
,.
(2)當(dāng)時(shí),如圖①,
.
當(dāng)時(shí),如圖②,
設(shè)交于.
.
.
即.
或.
當(dāng)時(shí),如圖③,
設(shè)交于.
.
,
或.
當(dāng)時(shí),如圖④,
.
(此問不畫圖不扣分)
(3).
(提示:以為直徑作圓,當(dāng)直線
與此圓相切時(shí),.)
(4)的值為,,.
(提示:當(dāng)時(shí),.
當(dāng)時(shí),(舍),.
當(dāng)時(shí),.)
【解析】(1)作出作PK⊥MN于K,利用等腰三角形的性質(zhì)得出KO的長,即可出P點(diǎn)的坐標(biāo);
(2)利用關(guān)于x軸對稱的性質(zhì)得出P′點(diǎn)的坐標(biāo),再利用交點(diǎn)式求出二次函數(shù)解析式即可;
(3)分別利用當(dāng)0<b≤2時(shí),當(dāng)2<b≤3時(shí)以及當(dāng)3<b<4時(shí)和當(dāng)b≥4時(shí)結(jié)合圖象求出即可;
(4)分PC為腰或底兩種情況分析。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線分別交軸,軸于點(diǎn),點(diǎn)是直線與雙曲線在第一象限內(nèi)的交點(diǎn),軸,垂足為點(diǎn),的面積為4.
(1)求點(diǎn)的坐標(biāo);
(2)求雙曲線的解析式及直線與雙曲線另一交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆廣東省汕頭市潮南區(qū)中考模擬考試數(shù)學(xué)卷(帶解析) 題型:解答題
如圖,直線分別交軸,軸于點(diǎn),點(diǎn)是直線與雙曲線在第一象限內(nèi)的交點(diǎn),軸,垂足為點(diǎn),的面積為4.
(1)求點(diǎn)的坐標(biāo);
(2)求雙曲線的解析式及直線與雙曲線另一交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省汕頭市潮南區(qū)中考模擬考試數(shù)學(xué)卷(解析版) 題型:解答題
如圖,直線分別交軸,軸于點(diǎn),點(diǎn)是直線與雙曲線在第一象限內(nèi)的交點(diǎn),軸,垂足為點(diǎn),的面積為4.
(1)求點(diǎn)的坐標(biāo);
(2)求雙曲線的解析式及直線與雙曲線另一交點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com