在課外小組活動(dòng)時(shí),小偉拿來一道題(原問題)和小熊、小強(qiáng)交流.

原問題:如圖1,已知△ABC,∠ACB=90°,∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點(diǎn)F.探究線段DF與EF的數(shù)量關(guān)系.

小偉同學(xué)的思路是:過點(diǎn)D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問

題得解.

小熊同學(xué)說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.

小強(qiáng)同學(xué)經(jīng)過合情推理,提出一個(gè)猜想,我們可以把問題推廣到一般情況.

請你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問題:

(1)寫出原問題中DF與EF的數(shù)量關(guān)系;

(2)如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;

(3)如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在課外小組活動(dòng)時(shí),小慧拿來一道題(原問題)和小東、小明交流.
原問題:如圖1,已知△ABC,∠ACB=90°,∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點(diǎn)F.探究線段DF與EF的數(shù)量關(guān)系.
小慧同學(xué)的思路是:過點(diǎn)D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問題得解.
小東同學(xué)說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60度.
小明同學(xué)經(jīng)過合情推理,提出一個(gè)猜想,我們可以把問題推廣到一般情況.
請你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問題:
(1)寫出原問題中DF與EF的數(shù)量關(guān)系;
(2)如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;
(3)如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,精英家教網(wǎng)你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在課外小組活動(dòng)時(shí),小偉拿來一道題(原問題)和小熊、小強(qiáng)交流.

原問題:如圖1,已知△ABC,∠ACB=90° , ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點(diǎn)F. 探究線段DF與EF的數(shù)量關(guān)系.小偉同學(xué)的思路是:過點(diǎn)D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問題得解.小熊同學(xué)說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強(qiáng)同學(xué)經(jīng)過合情推理,提出一個(gè)猜想,我們可以把問題推廣到一般情況.請你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問題:

1.寫出原問題中DF與EF的數(shù)量關(guān)系

2.如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;

3.如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中

得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在課外小組活動(dòng)時(shí),小偉拿來一道題(原問題)和小熊、小強(qiáng)交流.
原問題:如圖1,已知△ABC, ∠ACB=90°, ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB,  EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點(diǎn)F. 探究線段DF與EF的數(shù)量關(guān)系.小偉同學(xué)的思路是:過點(diǎn)D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問題得解.小熊同學(xué)說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強(qiáng)同學(xué)經(jīng)過合情推理,提出一個(gè)猜想,我們可以把問題推廣到一般情況.請你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問題:
【小題1】寫出原問題中DF與EF的數(shù)量關(guān)系
【小題2】如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;
【小題3】如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中

得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆四川樂山市中區(qū)中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

在課外小組活動(dòng)時(shí),小偉拿來一道題(原問題)和小熊、小強(qiáng)交流.
原問題:如圖1,已知△ABC, ∠ACB=90°, ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB,  EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點(diǎn)F. 探究線段DF與EF的數(shù)量關(guān)系.小偉同學(xué)的思路是:過點(diǎn)D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問題得解.小熊同學(xué)說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強(qiáng)同學(xué)經(jīng)過合情推理,提出一個(gè)猜想,我們可以把問題推廣到一般情況.請你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問題:
【小題1】寫出原問題中DF與EF的數(shù)量關(guān)系
【小題2】如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;
【小題3】如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中

得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年四川樂山市區(qū)中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

在課外小組活動(dòng)時(shí),小偉拿來一道題(原問題)和小熊、小強(qiáng)交流.

原問題:如圖1,已知△ABC, ∠ACB=90° , ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB,  EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點(diǎn)F. 探究線段DF與EF的數(shù)量關(guān)系.小偉同學(xué)的思路是:過點(diǎn)D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問題得解.小熊同學(xué)說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強(qiáng)同學(xué)經(jīng)過合情推理,提出一個(gè)猜想,我們可以把問題推廣到一般情況.請你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問題:

1.寫出原問題中DF與EF的數(shù)量關(guān)系

2.如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;

3.如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中

得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明

 

查看答案和解析>>

同步練習(xí)冊答案