【題目】如圖1,在一個(gè)邊長為a的正方形木板上鋸掉一個(gè)邊長為b的正方形, 并把余下的部分沿虛線剪開拼成圖2的形狀.
(1)請用兩種方法表示陰影部分的面積
圖1得: ; 圖2得 ;
(2)由圖1與圖2 面積關(guān)系,可以得到一個(gè)等式: ;
(3)利用(2)中的等式,已知,且a+b=8,則a-b= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實(shí)踐活動中,小林在南濱河路上的A,B兩點(diǎn)處,利用測角儀分別對北岸的一觀景亭D進(jìn)行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點(diǎn)F.
(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;
(2)如圖2,將△ACD沿線段AD對折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DE∥AM時(shí),判斷NE與AC的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校組織800名學(xué)生參加了一次“漢字聽寫”大賽.賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于60分,為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績作為樣本,成績?nèi)缦拢?/span>
90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,83,100,73,76,80,77,81,86,75,82,85,71,68,74,98,90,97,85,84,78,73,65,92,96,60
對上述成績進(jìn)行了整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績x/分 | 頻數(shù) | 頻率 |
60≤x<70 | 6 | 0.15 |
70≤x<80 | a | b |
80≤x<90 | 14 | 0.35 |
90≤x≤100 | c | d |
請根據(jù)所給信息,解答下列問題:
(1)a= ,d= .
(2)請補(bǔ)全頻數(shù)分布直方圖
(3)若成績在90分以上(包括90分)的為“優(yōu)等,請你估計(jì)參加這次比賽的800名學(xué)生中成績“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,是對角線上的兩點(diǎn)(不與點(diǎn),重合)下列條件中,無法判斷四邊形一定為平行四邊形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖正比例函數(shù)y=2x的圖像與一次函數(shù) 的圖像交于點(diǎn)A(m,2),一次函數(shù)的圖象經(jīng)過點(diǎn)B(-2,-1)與y軸交點(diǎn)為C與x軸交點(diǎn)為D.
(1)求一次函數(shù)的解析式;
(2)求的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國元朝朱世杰所著的《算學(xué)啟蒙》(1299年)一書中有一道題目是:“今有良馬日行二百四十里,駑馬日行一百五十里.駑馬先行一十二日,問良馬幾何日追及之.”譯文是:快馬每天走240里,慢馬每天走150里.慢馬先走12天,快馬幾天可以追上慢馬?
(1)設(shè)快馬x天可以追上慢馬,請你將如下的線段圖補(bǔ)充完整:
(2)根據(jù)(1)中線段圖所反映的數(shù)量關(guān)系,列方程解決問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是⊙的直徑,點(diǎn)是⊙上一點(diǎn), 與過點(diǎn)的切線垂直,垂足為點(diǎn),直線與的延長線相交于點(diǎn),弦平分∠,交于點(diǎn),連接.
(1)求證: 平分∠;
(2)求證:PC=PF;
(3)若,AB=14,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形中,,點(diǎn)是斜邊上的一點(diǎn),將沿翻折得,連接,若是等腰三角形,則的長是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com