【題目】在中,,是對角線上的兩點(不與點,重合)下列條件中,無法判斷四邊形一定為平行四邊形的是( )
A. B. C. D.
【答案】B
【解析】
根據(jù)平行四邊形的判定方法逐項分析即可.
A.∵四邊形ABCD是平行四邊形,
∴AB=CD,∠ABC=∠CDF.
∵,
∴∠AEF=∠CFE,
∴∠AEB=∠CFD,
∴△ABE≌△CDF(AAS),
∴AE=CF,
∴四邊形AECF是平行四邊形,故A不符合題意;
B.由AE=CF無法證明四邊形AECF是平行四邊形,故B符合題意;
C. 如圖,連接AC與BD相交于O,若BE=DF,則OBBE=ODDF,即OE=OF,
又∵OA=OC,∴四邊形AECF是平行四邊形,故C不符合題意;
D.∵∠BAE=∠DCF,∠ABC=∠CDF,AB=CD,
∴△ABE≌△CDF(ASA),
∴AE=CF,
∴四邊形AECF是平行四邊形,故D不符合題意;
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索規(guī)律:將連續(xù)的偶2,4,6,8,…,排成如表:
(1)請你求出十字框中的五個數(shù)的和;
(2)設(shè)中間的數(shù)為x,請你用含x的式子表示十字框中的五個數(shù)的和;
(3)若將十字框上下左右移動,可框住另外的五個數(shù),這五個數(shù)的和能等于2018嗎?如能,寫出這五個數(shù),如不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種牛奶,進(jìn)價為每箱24元,規(guī)定售價不低于進(jìn)價.現(xiàn)在的售價為每箱36元,每月可銷售60箱.市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x中間的函數(shù)關(guān)系式和自變量的取值范圍;
(2)超市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點A,與y軸交于點B,且OA=3,AB=5.點P從點O出發(fā)沿OA以每秒1個單位長的速度向點A勻速運(yùn)動,到達(dá)點A后立刻以原來的速度沿AO返回;點Q從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運(yùn)動.伴隨著P、Q的運(yùn)動,DE保持垂直平分PQ,且交PQ于點D,交折線QB﹣BO﹣OP于點E.點P、Q同時出發(fā),當(dāng)點Q到達(dá)點B時停止運(yùn)動,點P也隨之停止.設(shè)點P、Q運(yùn)動的時間是t秒(t>0).
(1)求直線AB的解析式;
(2)在點P從O向A運(yùn)動的過程中,求△APQ的面積S與t之間的函數(shù)關(guān)系式(不必寫出t的取值范圍);
(3)在點E從B向O運(yùn)動的過程中,完成下面問題:
①四邊形QBED能否成為直角梯形?若能,請求出t的值;若不能,請說明理由;
②當(dāng)DE經(jīng)過點O時,請你直接寫出t的值.
【答案】(1)直線AB的解析式為;(2)S=﹣t2+t;
(3)四邊形QBED能成為直角梯形.①t=;②當(dāng)DE經(jīng)過點O時,t=或.
【解析】分析:(1)首先由在Rt△AOB中,OA=3,AB=5,求得OB的值,然后利用待定系數(shù)法即可求得一次函數(shù)的解析式;
(2)過點Q作QF⊥AO于點F.由△AQF∽△ABO,根據(jù)相似三角形的對應(yīng)邊成比例,借助于方程即可求得QF的長,然后即可求得的面積S與t之間的函數(shù)關(guān)系式;
(3)①分別從DE∥QB與PQ∥BO去分析,借助于相似三角形的性質(zhì),即可求得t的值;
②根據(jù)題意可知即時,則列方程即可求得t的值.
詳解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得
∴A(3,0),B(0,4).
設(shè)直線AB的解析式為y=kx+b.
∴.解得
∴直線AB的解析式為
(2)如圖1,過點Q作QF⊥AO于點F.
∵AQ=OP=t,∴AP=3t.
由△AQF∽△ABO,得
∴
∴
∴
∴
(3)四邊形QBED能成為直角梯形,
①如圖2,當(dāng)DE∥QB時,
∵DE⊥PQ,
∴PQ⊥QB,四邊形QBED是直角梯形.
此時
由△APQ∽△ABO,得
∴
解得
如圖3,當(dāng)PQ∥BO時,
∵DE⊥PQ,
∴DE⊥BO,四邊形QBED是直角梯形.
此時
由△AQP∽△ABO,得
即
3t=5(3t),
3t=155t,
8t=15,
解得
(當(dāng)P從A向0運(yùn)動的過程中還有兩個,但不合題意舍去).
②當(dāng)DE經(jīng)過點O時,
∵DE垂直平分PQ,
∴EP=EQ=t,
由于P與Q相同的時間和速度,
∴AQ=EQ=EP=t,
∴∠AEQ=∠EAQ,
∵
∴∠BEQ=∠EBQ,
∴BQ=EQ,
∴
所以
當(dāng)P從A向O運(yùn)動時,
過點Q作QF⊥OB于F,
EP=6t,
即EQ=EP=6t,
AQ=t,BQ=5t,
∴
∴
∵
即
解得:
∴當(dāng)DE經(jīng)過點O時, 或.
點睛:本題考查知識點較多,勾股定理,待定系數(shù)法求一次函數(shù)解析式,相似三角形的判定與性質(zhì)等知識點,熟練掌握和運(yùn)用各個知識點是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
21
【題目】如圖,反比例函數(shù)y=(m≠0)與一次函數(shù)y=kx+b(k≠0)的圖象相交于A、B兩點,點A的坐標(biāo)為(-6,2),點B的坐標(biāo)為(3,n).求反比例函數(shù)和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入﹣成本),并指出售價為多少元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在一個邊長為a的正方形木板上鋸掉一個邊長為b的正方形, 并把余下的部分沿虛線剪開拼成圖2的形狀.
(1)請用兩種方法表示陰影部分的面積
圖1得: ; 圖2得 ;
(2)由圖1與圖2 面積關(guān)系,可以得到一個等式: ;
(3)利用(2)中的等式,已知,且a+b=8,則a-b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點,若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系.
解決此問題可以用如下方法:延長AE交DC的延長線于點F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉(zhuǎn)化在一個三角形中即可判斷.
AB、AD、DC之間的等量關(guān)系為 ;
(2)問題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長線交于點F,E是BC的中點,若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
(3)問題解決:如圖③,AB∥CF,AE與BC交于點E,BE:EC=2:3,點D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)學(xué)生的身體素質(zhì),某校堅持長年的全員體育鍛煉,并定期進(jìn)行體能測試,下面是將某班學(xué)生的立定跳遠(yuǎn)成績(精確到0.01m),進(jìn)行整理后,分成5組,畫了的頻率分布直方圖的部分,已知:從左到右4個小組的頻率分別是:0.05,0.15,0.30,0.35,第五小組的頻數(shù)是9.
(1)該班參加測試的人數(shù)是多少?
(2)補(bǔ)全頻率分布直方圖.
(3)若該成績在2.00m(含2.00)的為合格,問該班成績合格率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “清明時節(jié)雨紛紛”是必然事件
B. 了解路邊行人邊步行邊低頭看手機(jī)的情況可以采取對在路邊行走的學(xué)生隨機(jī)發(fā)放問卷的方式進(jìn)行調(diào)查
C. 射擊運(yùn)動員甲、乙分別射擊10次且擊中環(huán)數(shù)的方差分別是0.5和1.2,則甲隊員的成績好
D. 分別寫有三個數(shù)字 -1,-2,4的三張卡片(卡片的大小形狀都相同),從中任意抽取兩張,則卡片上的兩數(shù)之積為正數(shù)的概率為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com