已知菱形ABCD的兩條對(duì)角線分別為6和8,M、N分別是邊BC、CD的中點(diǎn),P是對(duì)角線BD上一點(diǎn),則PM+PN的最小值=.
考點(diǎn):
軸對(duì)稱-最短路線問(wèn)題;菱形的性質(zhì).
分析:
作M關(guān)于BD的對(duì)稱點(diǎn)Q,連接NQ,交BD于P,連接MP,此時(shí)MP+NP的值最小,連接AC,求出OC、OB,根據(jù)勾股定理求出BC長(zhǎng),證出MP+NP=QN=BC,即可得出答案.
解答:
解:
作M關(guān)于BD的對(duì)稱點(diǎn)Q,連接NQ,交BD于P,連接MP,此時(shí)MP+NP的值最小,連接AC,
∵四邊形ABCD是菱形,
∴AC⊥BD,∠QBP=∠MBP,
即Q在AB上,
∵M(jìn)Q⊥BD,
∴AC∥MQ,
∵M(jìn)為BC中點(diǎn),
∴Q為AB中點(diǎn),
∵N為CD中點(diǎn),四邊形ABCD是菱形,
∴BQ∥CD,BQ=CN,
∴四邊形BQNC是平行四邊形,
∴NQ=BC,
∵四邊形ABCD是菱形,
∴CO=AC=3,BO=BD=4,
在Rt△BOC中,由勾股定理得:BC=5,
即NQ=5,
∴MP+NP=QP+NP=QN=5,
故答案為:5.
點(diǎn)評(píng):
本題考查了軸對(duì)稱﹣最短路線問(wèn)題,平行四邊形的性質(zhì)和判定,菱形的性質(zhì),勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)軸對(duì)稱找出P的位置.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、165° | B、150° | C、135° | D、120° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com