設直角三角形的兩條直角邊長分別為a,b,斜邊長為c.若a,b,c均為整數(shù),且c=ab-(a+b),求滿足條件的直角三角形的個數(shù).
【答案】分析:先根據(jù)此三角形是直角三角形,利用勾股定理把原式化為(a-6)(b-6)=18,再根據(jù)a,b均為正整數(shù),不妨設a<b,可得出關于a、b的二元一次方程,求出a、b、c的對應值即可.
解答:解:由勾股定理得,c2=a2+b2
又∵c=ab-(a+b),得

整理得,ab-6(a+b)+18=0,即(a-6)(b-6)=18,
∵a,b均為正整數(shù),不妨設a<b,
可得,
可解出,
∴滿足條件的直角三角形有3個.
故答案為:3.
點評:本題考查的是非一次不定方程及勾股定理,解答此題的關鍵是先利用勾股定理把原式化為兩個因式積的形式,再根據(jù)a,b均為正整數(shù)進行解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.

  結論:在探討過程中,有三位同學得出如下結果:

       甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、____個、_____個大小不同的內(nèi)接正方形.

       乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.

       丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.

任務:(1)填充甲同學結論中的數(shù)據(jù);

       (2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

       (3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明。

(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分).

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結論:在探討過程中,有三位同學得出如下結果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內(nèi)接正方形.
乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.
任務:(1)填充甲同學結論中的數(shù)據(jù);
(2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明
(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(江西卷)數(shù)學 題型:解答題

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結論:在探討過程中,有三位同學得出如下結果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內(nèi)接正方形.
乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.
任務:(1)填充甲同學結論中的數(shù)據(jù);
(2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明
(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用”這個結論,但在證明正確的情況下扣1分).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省江陰市九年級上學期期中考試數(shù)學卷 題型:解答題

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.

  結論:在探討過程中,有三位同學得出如下結果:

        甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、____個、_____個大小不同的內(nèi)接正方形.

        乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.

        丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.

任務:(1)填充甲同學結論中的數(shù)據(jù);

       (2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

       (3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明。

(如圖,設銳角△ABC的三條邊分別為不妨設,三條邊上的對應高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分).

 

查看答案和解析>>

科目:初中數(shù)學 來源:江西省中考真題 題型:解答題

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形。
結論:在探討過程中,有三位同學得出如下結果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內(nèi)接正方形。
乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大。
丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小。
任務:(1)填充甲同學結論中的數(shù)據(jù);
(2)乙同學的結果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結合(2)的判定,推測丙同學的結論是否正確,并證明。
(如圖,設銳角△ABC的三條邊分別為a,b,c,不妨設a>b>c,三條邊上的對應高分別為ha,hb,hc,內(nèi)接正方形的邊長分別為xa,xb,xc,若你對本小題證明有困難,可直接用“”這個結論,但在證明正確的情況下扣1分)。

查看答案和解析>>

同步練習冊答案