【題目】如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點,與雙曲線y交于E,F兩點,若AB2EF,則k的值是_____

【答案】

【解析】

FHx,ECy,FHEC交于D,先利用一次函數(shù)圖像上的點的坐標特征得到A2,0),B0,2),易得AOB為等腰直角三角形,AB2,所以,EFAB,DEF為等腰直角三角形,FDDEEF1,F點坐標是:(t,﹣t+2),E點坐標為t+1,﹣t+1),根據(jù)反比例函數(shù)圖象上的點的坐標特征得到t(﹣t+2)=(t+1)(﹣t+1),解得t,E點坐標為,),繼而可求得k的值

如圖,FHxECy,FHEC交于D,

由直線y=﹣x+2可知A點坐標為20),B點坐標為02),OAOB2,

∴△AOB等腰直角三角形

AB2,

EFAB

∴△DEF為等腰直角三角形

FDDEEF1,

F點橫坐標為t,代入y=﹣x+2,則縱坐標是t+2,F的坐標是:(t,﹣t+2),E點坐標為t+1,﹣t+1),

t(﹣t+2)=(t+1)(﹣t+1),解得t,

E點坐標為,),

k×

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,正方形OABC的頂點A、C分別在x,y軸上,且AO1.將正方形OABC繞原點O順時針旋轉90°,且A1O2AO,得到正方形OA1B1C1,再將正方OA1B1C1繞原點O順時針旋轉90°,且A2O2A1O,得到正方形OA2B2C2…以此規(guī)律,得到正方形OA2019B2019C2019,則點B2019的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A12,1)在直線y=kx上,過點A1A1B1y軸交x軸于點B1,以點A1為直角頂點,A1B1為直角邊在A1B1的右側作等腰直角△A1B1C1,再過點C1A2B2y軸,分別交直線y=kxx軸于A2,B2兩點,以點A2為直角頂點,,A2B2為直角邊在A2B2的右側作等腰直角△A2B2C2,按此規(guī)律進行下去,則帶點Cn的坐標為_________________.(結果用含正整數(shù)n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,拋物線經(jīng)過,兩點,與軸正半軸交于點,連接,為線段上的動點,不重合,作關于的對稱點為,連接,,

(1)求拋物線的解析式;

(2)當點在拋物線上時,求點的坐標;

(3)設點的橫坐標為,重疊部分的面積為

直接寫出的函數(shù)關系式;

為直角三角形時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明去超市采購防疫物品,超市提供下表所示兩種套餐,小明決定購買50套餐.超市為了促進消費,給出兩種優(yōu)惠方式,方式一:現(xiàn)金支付總額每滿700元立減200元;方式二:現(xiàn)金支付總額每滿600元送300元現(xiàn)金券,現(xiàn)金券可等同現(xiàn)金使用,但是使用現(xiàn)金券的總額不能超過應付總金額.

套餐類別

一次性防護口罩

免洗洗手液

套餐價格

2

1

71

1

2

67

1)求一次性防護口罩和免洗洗手液各自的單價;

2)小明覺得優(yōu)惠方式二比方式一的優(yōu)惠力度更大,他計劃分兩次購買,第一次付現(xiàn)金購買一部分套餐,獲得的現(xiàn)金券在購買剩下的部分的時候全部用掉.請你通過計算說明小明這樣做能否比優(yōu)惠方式一付款更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年豬肉價格受非洲豬瘟疫情影響,有較大幅度的上升,為了解某地區(qū)養(yǎng)殖戶受非洲豬瘟疫情感染受災情況,現(xiàn)從該地區(qū)建檔的養(yǎng)殖戶中隨機抽取了部分養(yǎng)殖戶進行了調查(把調查結果分為四個等級:A級:非常嚴重;B級:嚴重;C級:一般;D級:沒有感染),并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調查的養(yǎng)殖戶的總戶數(shù)是   ;把圖2條形統(tǒng)計圖補充完整.

2)若該地區(qū)建檔的養(yǎng)殖戶有1500戶,求非常嚴重與嚴重的養(yǎng)殖戶一共有多少戶?

3)某調研單位想從5戶建檔養(yǎng)殖戶(分別記為a,b,c,de)中隨機選取兩戶,進一步跟蹤監(jiān)測病毒傳播情況,請用列表或畫樹狀圖的方法求出選中養(yǎng)殖戶e的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC中,∠B=45°,∠C=60°,BC=4,D、F分別為AB、AC邊上的一個動點,過D分別作DFACF,DGBCG,那么FG的最小值為(

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BDAE于點F,延長AE至點C,使得FC=BC,連接BC

(1)求證:BC是⊙O的切線;

(2)O的半徑為5,tanA=,求FD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店在兩周內,將標價為10/斤的某種水果,經(jīng)過兩次降價后的價格為8.1/斤,并且兩次降價的百分率相同.

(1)求該種水果每次降價的百分率;

(2)從第一次降價的第1天算起,第x天(x為整數(shù))的售價、銷量及儲存和損耗費用的相關信息如表所示.已知該種水果的進價為4.1/斤,設銷售該水果第x(天)的利潤為y(元),求yx(1x15)之間的函數(shù)關系式,并求出第幾天時銷售利潤最大?

時間x(天)

1x9

9x15

x15

售價(元/斤)

1次降價后的價格

2次降價后的價格

銷量(斤)

80﹣3x

120﹣x

儲存和損耗費用(元)

40+3x

3x2﹣64x+400

(3)在(2)的條件下,若要使第15天的利潤比(2)中最大利潤最多少127.5元,則第15天在第14天的價格基礎上最多可降多少元?

查看答案和解析>>

同步練習冊答案