【題目】如圖,ABO的直徑,點(diǎn)DEO上,∠B2ADE,點(diǎn)CBA的延長(zhǎng)線(xiàn)上.

(Ⅰ)若∠C=∠DAB,求證:CEO的切線(xiàn);

(Ⅱ)若OF2,AF3,求EF的長(zhǎng).

【答案】)見(jiàn)解析;

【解析】

)連接OE,根據(jù)圓周角定理得到∠ADB90°.∠AOE2ADE,根據(jù)切線(xiàn)的判定定理即可得到結(jié)論;

)連接AE,根據(jù)圓周角定理得到∠1=∠B.根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

)連接OE,

AB為直徑,

∴∠ADB90°

∴∠DAB+B90°,

∵∠ADE和∠AOE都對(duì)著,

∴∠AOE2ADE,

又∵∠B2ADE,

∴∠AOE=∠B

又∵∠C=∠DAB,

∴∠C+AOE=∠DAB+B90°

∴∠CEO90°,

OECE,

CE是⊙O的切線(xiàn);

)連接AE

,

∴∠1=∠B

由()知∠AOE=∠B,

∴∠1=∠AOE

又∵∠2=∠2,

∴△EAF∽△OAE,

,

EFAE,AE23×515,

EFEA

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開(kāi)展了陽(yáng)光體育活動(dòng),某校為了解全校1000名學(xué)生每周課外體育活動(dòng)時(shí)間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對(duì)這50名學(xué)生每周課外體育活動(dòng)時(shí)間x(單位:小時(shí))進(jìn)行了統(tǒng)計(jì).根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計(jì)圖,并知道每周課外體育活動(dòng)時(shí)間在6≤x<8小時(shí)的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)本次調(diào)查屬于 調(diào)查,樣本容量是 ;

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖中空缺的部分;

(3)求這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù);

(4)估計(jì)全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】老師在微信群發(fā)了這樣一個(gè)圖:以線(xiàn)段AB為邊作正五邊形ABCDE和正三角形ABG,連接ACDG,交點(diǎn)為F,下列四位同學(xué)的說(shuō)法不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一條不完整的數(shù)軸上從左到右有點(diǎn)AB.將線(xiàn)段AB沿?cái)?shù)軸向右移動(dòng),移動(dòng)后的線(xiàn)段記為AB′,按要求完成下列各小題

1)若點(diǎn)A為數(shù)軸原點(diǎn),點(diǎn)B表示的數(shù)是4,當(dāng)點(diǎn)A′恰好是AB的中點(diǎn)時(shí),數(shù)軸上點(diǎn)B′表示的數(shù)為 

2)設(shè)點(diǎn)A表示的數(shù)為m,點(diǎn)A′表示的數(shù)為n,當(dāng)原點(diǎn)在線(xiàn)段AB之間時(shí),化簡(jiǎn)|m|+|n|+|mn|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初二年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)査,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專(zhuān)注聽(tīng)講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:

1)在這次評(píng)價(jià)中,一共抽査了   名學(xué)生;

2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為   度;

3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整:

4)如果全市有30000名初二學(xué)生,那么在試卷評(píng)講課中,請(qǐng)估計(jì)“獨(dú)立思考”的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB3,BC4,點(diǎn)EF分別在BCCD上,且∠EAF45°.如圖甲,若EAEF,則EF_____;如圖乙,若CECF,則EF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.

運(yùn)動(dòng)員甲測(cè)試成績(jī)表

測(cè)試序號(hào)

1

2

3

4

5

6

7

8

9

10

成績(jī)(分)

7

6

8

7

7

5

8

7

8

7

(1)寫(xiě)出運(yùn)動(dòng)員甲測(cè)試成績(jī)的眾數(shù)和中位數(shù);

(2)在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰(shuí)更合適?為什么? (參考數(shù)據(jù):三人成績(jī)的方差分別為、)

(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結(jié)束時(shí)球回到甲手中的概率是多少?(用樹(shù)狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A(1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線(xiàn)的頂點(diǎn),拋物線(xiàn)的對(duì)稱(chēng)軸DE交x軸于點(diǎn)E,連接BD.

(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線(xiàn)的函數(shù)表達(dá)式;

(2)點(diǎn)P是線(xiàn)段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo);

(3)在(2)的條件下,過(guò)點(diǎn)P作PFx軸于點(diǎn)F,G為拋物線(xiàn)上一動(dòng)點(diǎn),M為x軸上一動(dòng)點(diǎn),N為直線(xiàn)PF上一動(dòng)點(diǎn),當(dāng)以F、M、G為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm,花園的面積為Sm2

1)若花園的面積為192m2,求x的值;

2)寫(xiě)出花園面積Sx的函數(shù)關(guān)系式.x為何值時(shí),花園面積S有最大值?最大值為多少?

3)若在P處有一棵樹(shù)與墻CDAD的距離分別是a14a22)和6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),設(shè)花園面積S的最大值為y,直接寫(xiě)出ya的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案