【題目】初二年級教師對試卷講評課中學生參與的深度與廣度進行評價調(diào)査,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初二學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽査了 名學生;
(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;
(3)請將頻數(shù)分布直方圖補充完整:
(4)如果全市有30000名初二學生,那么在試卷評講課中,請估計“獨立思考”的約有多少人?
【答案】(1)560;(2)54;(3)詳見解析;(4)9000.
【解析】
(1)利用專注聽講的人數(shù)除以其所占的百分比即可求得這次調(diào)查的人數(shù);(2)利用360°乘以主動質(zhì)疑的人數(shù)所占的百分比即可求解;(3)求得講解題目的人數(shù),補全統(tǒng)計圖即可;(4)利用總?cè)藬?shù)乘以獨立思考人數(shù)所占的百分比即可求解.
(1)調(diào)查的總?cè)藬?shù)是:224÷40%=560(人),
故答案是:560;
(2)“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)是:360°× =54°,
故答案是:54;
(3)“講解題目”的人數(shù)是:560﹣84﹣168﹣224=84(人).
;
(4)在試卷評講課中,“獨立思考”的初三學生約有:30000×=9000(人).
科目:初中數(shù)學 來源: 題型:
【題目】由一些大小相等的小正方體組成的幾何體的主視圖與左視圖相同如圖所示,設組成這個幾何體的小正方體個數(shù)最少為m,最多為n,若以m,n的值分別為某個等腰三角形的兩條邊長,則該等腰三角形的周長為( )
A. 11或13B. 13或14C. 13D. 12或13或14或15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于點A,B兩點(點A在點B左邊),與y軸交于點C.
(1)求A,B兩點的坐標.
(2)點P是線段BC下方的拋物線上的動點,連結(jié)PC,PB.
①是否存在一點P,使△PBC的面積最大,若存在,請求出△PBC的最大面積;若不存在,試說明理由.
②連結(jié)AC,AP,AP交BC于點F,當∠CAP=∠ABC時,求直線AP的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學分別進行6次射擊訓練,訓練成績(單位:環(huán))如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
對他們的訓練成績作如下分析,其中說法正確的是( )
A. 他們訓練成績的平均數(shù)相同 B. 他們訓練成績的中位數(shù)不同
C. 他們訓練成績的眾數(shù)不同 D. 他們訓練成績的方差不同
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD為邊BC上的中線,且AD平分∠BAC.嘉淇同學先是以A為圓心,任意長為半徑畫弧,交AD于點P,交AC于點Q,然后以點C為圓心,AP長為半徑畫弧,交AC于點M,再以M為圓心,PQ長為半徑畫弧,交前弧于點N,作射線CN,交BA的延長線于點E.
(1)通過嘉淇的作圖方法判斷AD與CE的位置關系是 ,數(shù)量關系是 ;
(2)求證:AB=AC;
(3)若BC=24,CE=10,求△ABC的內(nèi)心到BC的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點D,E在⊙O上,∠B=2∠ADE,點C在BA的延長線上.
(Ⅰ)若∠C=∠DAB,求證:CE是⊙O的切線;
(Ⅱ)若OF=2,AF=3,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E
(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店老板準備購買A、B兩種型號的足球共100只,已知A型號足球進價每只40元,B型號足球進價每只60元.
(1)若該店老板共花費了5200元,那么A、B型號足球各進了多少只;
(2)若B型號足球數(shù)量不少于A型號足球數(shù)量的,那么進多少只A型號足球,可以讓該老板所用的進貨款最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A,B,C,D都在這些小正方形上,AB與CD相交于點O,則tan∠AOD等于( 。
A. B. 2C. 1D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com