現(xiàn)有A、B兩枚均勻的小立方體,立方體的每個面上分別標(biāo)有數(shù)字1,2,3,4,5,6.用小莉擲A立方體朝上的數(shù)字為x,小明擲B立方體朝上的數(shù)字為y來確定點P(x,y),那么它們各擲一次所確定的點P落在已知拋物線y=-x2+4x上的概率為   
【答案】分析:先利用列表展示所有36種等可能的情況,根據(jù)二次函數(shù)圖象上點的坐標(biāo)特得到(1,3)、(2,4)、(3,3)三個點在拋物線y=-x2+4x上,然后根據(jù)概率的定義即可求出點P落在已知拋物線y=-x2+4x上的概率.
解答:解:列表如下:
點P共有36種等可能的情況,其中(1,3)、(2,4)、(3,3)三個點在拋物線y=-x2+4x上,
所以它們各擲一次所確定的點P落在已知拋物線y=-x2+4x上的概率為 =
故答案為
點評:本題考查了利用列表法與樹狀圖法求概率的方法:先列表展示所有等可能的結(jié)果數(shù)n,再找出某事件發(fā)生的結(jié)果數(shù)m,然后根據(jù)概率的定義計算出這個事件的概率=.也考查了二次函數(shù)圖象上點的坐標(biāo)特征.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(課改)現(xiàn)有A、B兩枚均勻的小立方體(立方體的每個面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x小明擲B立方體朝上的數(shù)字為y來確定點P(x,y),那么它們各擲一次所確定的點P落在已知拋物線y=-x2+4x上的概率為( 。
A、
1
18
B、
1
12
C、
1
9
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有A、B兩枚均勻的小立方體(立方體的每個面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x、小明擲B立方體朝上的數(shù)字為y來確定點P(x,y),那么他們各擲一次所確定的點P落在雙曲線y=
6
x
上的概率為( 。
A、
1
9
B、
2
3
C、
1
18
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有A、B兩枚均勻的小立方體骰子(立方體的每個面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x、小明擲B立方體朝上的數(shù)字為y來確定點P(x,y),那么它們各擲一次所確定的點P落在已知直線y=2x上的概率為( 。
A、
1
18
B、
1
12
C、
1
9
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有A、B兩枚均勻的正方體骰子(六個面上分別標(biāo)有數(shù)字1到6).小明擲A正方體朝上的數(shù)字x,小亮擲B正方體朝上的數(shù)字y,分別作點P的橫坐標(biāo)和縱坐標(biāo),那么他們各擲一次所確定的點P(x,y)落在如圖所示的矩形內(nèi)(含邊界)的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有A、B兩枚均勻的小立方體,立方體的每個面上分別標(biāo)有數(shù)字1,2,3,4,5,6.用小莉擲A立方體朝上的數(shù)字為x,小明擲B立方體朝上的數(shù)字為y來確定點P(x,y),那么它們各擲一次所確定的點P落在已知拋物線y=-x2+4x上的概率為
1
12
1
12

查看答案和解析>>

同步練習(xí)冊答案