【題目】在一個不透明的口袋里裝有若干個相同的紅球,為了用估計袋中紅球的數(shù)量,(1)班學(xué)生在數(shù)學(xué)實驗室分組做摸球?qū)嶒?/span>:每組先將10個與紅球大小形狀完全相同的白球裝入袋中,攪勻后從中隨機摸出一個球并記下顏色,再把它放回袋中,不斷重復(fù).下表是這次活動統(tǒng)計匯總各小組數(shù)據(jù)后獲得的全班數(shù)據(jù)統(tǒng)計表:

摸球的次數(shù)s

150

300

600

900

1200

1500

摸到白球的頻數(shù)n

63

a

247

365

484

606

摸到白球的頻率

0.420

0.410

0.412

0.406

0.403

b

(1) 按表格數(shù)據(jù)格式,表中的= ;= ;

(2) 請估計:當(dāng)次數(shù)s很大時,摸到白球的頻率將會接近 (精確到0.1);

(3)請推算:摸到紅球的概率是 (精確到0.1).

【答案】1a=123,b=0.404;(20.4;(30.6.

【解析】

1)根據(jù)頻率=頻數(shù)÷樣本總數(shù)分別求得a、b的值即可;
2)從表中的統(tǒng)計數(shù)據(jù)可知,摸到白球的頻率穩(wěn)定在0.4左右;
3)摸到紅球的概率為1-0.4=0.6;

解:(1a=300×0.41=123,b=606÷1500=0.404;
2)當(dāng)次數(shù)s很大時,摸到白球的頻率將會接近0.4;
3)摸到紅球的概率是1-0.4=0.6;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家距離學(xué)校8千米,今天早晨,小明騎車上學(xué)圖中,自行車出現(xiàn)故障,恰好路邊有便民服務(wù)點,幾分鐘后車修好了,他以更快的速度勻速騎車到校.我們根據(jù)小明的這段經(jīng)歷畫了一幅圖象(如圖),該圖描繪了小明行駛的路程(千米)與他所用的時間(分鐘)之間的關(guān)系.請根據(jù)圖象,解答下列問題:

1)小明行了多少千米時,自行車出現(xiàn)故障?修車用了幾分鐘?

2)小明從早晨出發(fā)直到到達(dá)學(xué)校共用了多少分鐘?

3)小明修車前、后的行駛速度分別是多少?

4)如果自行車未出現(xiàn)故障,小明一直用修車前的速度行駛,那么他比實際情況早到或晚到多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級6個班舉行畢業(yè)文藝匯演,每班3個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計后發(fā)現(xiàn)歌唱類節(jié)目數(shù)比舞蹈類節(jié)目數(shù)的2倍少6個.設(shè)舞蹈類節(jié)目有個.

(1)用含的代數(shù)式表示:歌唱類節(jié)目有______________個;

(2)求九年級表演的歌唱類與舞蹈類節(jié)目數(shù)各有多少個?

(3)該校七、八年級有小品節(jié)目參與匯演,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預(yù)計全場節(jié)目交接所用的時間總共16分鐘.若從19:00開始,21:30之前演出結(jié)束,問參與的小品類節(jié)目最多能有多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,ABC的三個頂點的位置如圖所示.現(xiàn)將ABC平移,使點A變換為點D,點E、F分別是B、C的對應(yīng)點.

1)請畫出平移后的DEF,并求DEF的面積.
2)若連接AD、CF,則這兩條線段之間的關(guān)系是
3)請在AB上找一點P,使得線段CP平分ABC的面積,在圖上作出線段CP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋里裝有16個只有顏色不同的球,其中紅球有x個,白球有2x個,其他均為黃球,現(xiàn)甲從布袋中隨機摸出一個球,若是紅球則甲同學(xué)獲勝,甲同學(xué)把摸出的球放回并攪勻,由乙同學(xué)隨機摸出一個球,若為黃球,則乙同學(xué)獲勝。

(1)當(dāng)X=3時,誰獲勝的可能性大?

(2)當(dāng)x為何值時,游戲?qū)﹄p方是公平的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.

(1)證明四邊形ADCF是菱形;

(2)若AC=4,AB=5,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);

(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A、B均在函數(shù) (k>0,x>0)的圖象上,⊙A與x軸相切,⊙B與y軸相切.若點B的坐標(biāo)為(1,6),⊙A的半徑是⊙B的半徑的2倍,則點A的坐標(biāo)為( )

A.(2,2)
B.(2,3)
C.(3, 2)
D.(4,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分9分)

根據(jù)要求,解答下列問題.

(1)根據(jù)要求,解答下列問題.

方程x2-2x+1=0的解為________________________;

方程x23x+2=0的解為________________________;

方程x24x+3=0的解為________________________;

…… ……

(2)根據(jù)以上方程特征及其解的特征,請猜想:

方程x29x+8=0的解為________________________;

關(guān)于x的方程________________________的解為x1=1,x2=n.

(3)請用配方法解方程x29x+8=0,以驗證猜想結(jié)論的正確性.

查看答案和解析>>

同步練習(xí)冊答案