【題目】將兩塊三角板按圖1擺放,固定三角板ABC,將三角板CDE繞點C按順時針方向旋轉,其中∠A=45°,∠D=30°,設旋轉角為α,(0°<a<80°)
(1)當DE∥AC時(如圖2),求α的值;
(2)當DE∥AB時(如圖3).AB與CE相交于點F,求α的值;
(3)當0°<α<90°時,連結AE(如圖4),直線AB與DE相交于點F,試探究∠1+∠2+∠3的大小是否改變?若不改變,請求出此定值,若改變,請說明理由.
【答案】(1)60°;
(2)105°;
(3)不變,其值為105°.
【解析】
(1)由DE∥AC可得∠DCA=∠D=30°,則可求∠α=∠DCB=60°;
(2)由DE∥AB可得∠E=∠AFC=60°,根據(jù)三角形內角和可求∠FCA=75°即可求∠ACD=15°,則可求∠α;
(3)根據(jù)三角形內角和和外角等于不相鄰的兩個內角和,列出∠1,∠2,∠3關系式可求∠1+∠2+∠3的值.
(1)∵DE∥AC,
∴∠D=∠ACD=30°,
又∵∠BCA=90°,
∴∠BCD=∠BCA﹣∠ACD=60°,即α=60°;
(2)∵DE∥AB,
∴∠E=∠CFA=60°,
又∵∠CFA=∠B+∠BCE,
∴∠BCE=15°,
∴∠BCD=∠ECD+∠BCE=105°,即α=105°;
(3)大小不變,其值為105°,
∵∠ACD+∠CAB=∠D+∠AFD,∠CAB=45°,∠D=30°,
∴∠AFD﹣∠ACD=15°,
又∵∠1+∠2=∠AFD,∠3=90°﹣∠ACD,
∴∠1+∠2+∠3=∠AFD+90°﹣∠ACD=90°+15°=105°.
科目:初中數(shù)學 來源: 題型:
【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:
次數(shù) | 購買數(shù)量(件 | 購買總費用(元 | |
A | B | ||
第一次 | 2 | 1 | 55 |
第二次 | 1 | 3 | 65 |
根據(jù)以上信息解答下列問題:
(1)求A,B兩種商品的單價;
(2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由我國完全自主設計、自主建造的首艘國產航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.
(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞頂點C逆時針旋轉得到△A′B′C,且點B剛好落在A′B′上,若∠A=25°,∠BCA′=45°,求∠A′BA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y= kx +b(k≠0)的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)y=(m≠0)的圖象交于C、D兩點。已知點C的坐標是(6,-1),D(n,3).
(1)求m的值和點D的坐標;
(2)求線段AB的長度;
(3)根據(jù)圖象直接寫出: 當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】科學家為了推測最適合某種珍奇植物生長的溫度,將這種植物分別放在不同溫度的環(huán)境中,經過一定時間后,測試出這種植物高度的增長情況,部分數(shù)據(jù)如下表:
溫度t/℃ | … | ﹣5 | ﹣3 | 2 | … |
植物高度增長量h/mm | … | 34 | 46 | 41 | … |
科學家推測出h(mm)與t之間的關系可以近似地用二次函數(shù)來刻畫.已知溫度越適合,植物高度增長量越大,由此可以推測最適合這種植物生長的溫度為( 。
A. ﹣2℃ B. ﹣1℃ C. 0℃ D. 1℃
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圓桌面(桌面中間有一個直徑為1m的圓洞)正上方的燈泡(看作一個點)發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為2m,桌面離地面1m,若燈泡離地面2m,則地面圓環(huán)形陰影的面積是( )
A. 2πm2 B. 3πm2 C. 6πm2 D. 12πm2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com