(2012•嘉定區(qū)一模)計算:cos60°•cos30°-
1
2
sin30°•tan60°+
1
2cos45°-tan45°
分析:把特殊角的三角函數(shù)值代入,然后化簡求值即可.
解答:解:cos60°•cos30°-
1
2
sin30°•tan60°+
1
2cos45°-tan45°

=
1
2
×
3
2
-
1
2
×
1
2
×
3
+
1
2-
1
=
3
4
-
3
4
+
2
+1
=
2
+1
點評:本題考查實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟記特殊角的三角函數(shù)值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)在Rt△ABC中,∠C=90°,cosA=
3
5
,則sinA的值為
4
5
4
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)如果二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列判斷中,正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)二次函數(shù)y=2-(x+1)2的頂點坐標是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)如圖,△ABC與△DEF的頂點均在方格紙中的小正方形方格(邊長為一個單位長)的頂點處,則△ABC
一定相似
一定相似
△DEF(在橫線上方填寫“一定相似”或“不一定相似”或“一定不相似”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•嘉定區(qū)一模)如圖,已知平行四邊形ABCD,點M是邊BC的中點.設(shè)
AB
=
a
AD
=
b
.用向量
a
、
b
表示向量
DM
,
DM
=
a
-
1
2
b
a
-
1
2
b

查看答案和解析>>

同步練習冊答案