【題目】如圖,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A-2,-1),B-3-3),C-1-3).

1)畫(huà)出ABC關(guān)于y軸對(duì)稱(chēng)的A1B1C1,并寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo);

2)若A2B2C2是由ABC平移而得,且點(diǎn)A2的坐標(biāo)為(-4,4),請(qǐng)寫(xiě)出B2C2的坐標(biāo).

【答案】1)圖見(jiàn)詳解,點(diǎn)A1、B1、C1的坐標(biāo)分別為(2,-1),(3,-3),(1,-3);(2)點(diǎn)B2的坐標(biāo)為(-5,2),C2的坐標(biāo)為(-3,2).

【解析】

1)根據(jù)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征寫(xiě)出點(diǎn)A1B1、C1的坐標(biāo),然后描點(diǎn)即可;

2)利用點(diǎn)A和點(diǎn)A2的坐標(biāo)特征確定平移的方向與距離,從而寫(xiě)出B2C2的坐標(biāo).

解:(1)如圖,A1B1C1為所作,

點(diǎn)A1、B1、C1的坐標(biāo)分別為(2,-1),(3,-3),(1,-3);

2)∵點(diǎn)A-2,-1)平移后的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(-44),

∴將ABC先向上平移5個(gè)單位長(zhǎng)度,再向左平移2個(gè)單位長(zhǎng)度得到A2B2C2,

∴點(diǎn)B2的坐標(biāo)為(-5,2),C2的坐標(biāo)為(-3,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線(xiàn)與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線(xiàn)與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有27米的距離(BF,C在一條直線(xiàn)上).

(1)求辦公樓AB的高度;

(2)若要在AE之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.

(參考數(shù)據(jù):sin22°cos22°,tan22°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知點(diǎn)A、B是反比例函數(shù)y=﹣上在第二象限內(nèi)的分支上的兩個(gè)點(diǎn),點(diǎn)C(0,3),且△ABC滿(mǎn)足AC=BC,∠ACB=90°,則線(xiàn)段AB的長(zhǎng)為__

【答案】

【解析】過(guò)點(diǎn)AADy軸于點(diǎn)D,過(guò)點(diǎn)BBEy軸于點(diǎn)E,過(guò)點(diǎn)AAFBE軸于點(diǎn)F如圖所示.

∵∠ACB=90°,

∴∠ACD+BCE=90°,

又∵ADy軸,BEy軸,

∴∠ACD+CAD=90°,BCE+CBE=90°,

∴∠ACD=CBE,BCE=CAD

ACDCBE中,由

ACDCBE(ASA).

設(shè)點(diǎn)B的坐標(biāo)為(m,﹣)(m<0),則E(0,﹣),點(diǎn)D(0,3﹣m),點(diǎn)A(﹣﹣3,3﹣m),

∵點(diǎn)A(﹣﹣3,3﹣m)在反比例函數(shù)y=﹣上,

,解得:m=3m=2(舍去).

∴點(diǎn)A的坐標(biāo)為(﹣1,6),點(diǎn)B的坐標(biāo)為(﹣3,2),點(diǎn)F的坐標(biāo)為(﹣1,2),

∴BF=2,AF=4,

故答案為:2

點(diǎn)睛

過(guò)點(diǎn)AADy軸于點(diǎn)D,過(guò)點(diǎn)BBEy軸于點(diǎn)E,過(guò)點(diǎn)AAFBE軸于點(diǎn)F,根據(jù)角的計(jì)算得出ACD=CBEBCE=CAD,由此證出ACDCBE;再設(shè)點(diǎn)B的坐標(biāo)為(m,﹣),由三角形全等找出點(diǎn)A的坐標(biāo),將點(diǎn)A的坐標(biāo)代入到反比例函數(shù)解析式中求出m的值,將m的值代入A,B點(diǎn)坐標(biāo)即可得出點(diǎn)A,B的坐標(biāo),并結(jié)合點(diǎn)A,B的坐標(biāo)求出點(diǎn)F的坐標(biāo),利用勾股定理即可得出結(jié)論.

型】填空
結(jié)束】
18

【題目】二次函數(shù)y=x2+2m+1x+m2﹣1)有最小值﹣2,則m=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)為A-3,1)、B-4,-3)、C-2,-4),ABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)180°,得到A1B1C1再將A1B1C1向左平移5個(gè)單位得到A2B2C2

1)畫(huà)出A1B1C1,并寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);

2)畫(huà)出A2B2C2,并寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo);

3Pa,b)是ABC的邊AC上一點(diǎn),ABC經(jīng)旋轉(zhuǎn),平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1、P2,請(qǐng)直接寫(xiě)出點(diǎn)P2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點(diǎn)E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解題:

定義:如果一個(gè)數(shù)的平方等于-1,記為i2=-1,這個(gè)數(shù)i叫做虛數(shù)單位,把形如a+bia,b為實(shí)數(shù))的數(shù)叫做復(fù)數(shù),其中a叫這個(gè)復(fù)數(shù)的實(shí)部,b叫做這個(gè)復(fù)數(shù)的虛部,它的加、減,乘法運(yùn)算與整式的加、減、乘法運(yùn)算類(lèi)似.

例如計(jì)算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;

(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;

根據(jù)以上信息,完成下列問(wèn)題:

1)填空:i3= ,i4= ;

2)計(jì)算:(1+i)×(3-4i);

3)計(jì)算:i+i2+i3+…+i2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C、D是圓上兩點(diǎn),且OD∥AC,ODBC交于點(diǎn)E.

1)求證:EBC的中點(diǎn);

2)若BC8,DE3,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC 的頂點(diǎn)坐標(biāo)分別為A0-3),B3,-2),C2,-4).

1)在圖中作出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1

2)點(diǎn)C1的坐標(biāo)為:    

3ABC的周長(zhǎng)為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn) y=ax2+bx+ca≠0)的頂點(diǎn)坐標(biāo)為 Q(2,﹣1),且與 y 軸交于點(diǎn) C(0,3), 與 x 軸交于 A、B 兩點(diǎn)(點(diǎn) A 在點(diǎn) B 的右側(cè)),點(diǎn) P 是拋物線(xiàn)上的一動(dòng)點(diǎn),從點(diǎn) C 沿拋物線(xiàn)向 點(diǎn) A 運(yùn)動(dòng)點(diǎn) P A 不重合),過(guò)點(diǎn) P PDy 軸,交 AC 于點(diǎn) D

(1)求該拋物線(xiàn)的函數(shù)關(guān)系式及 A、B 兩點(diǎn)的坐標(biāo);

(2)求點(diǎn) P 在運(yùn)動(dòng)的過(guò)程中,線(xiàn)段 PD 的最大值;

(3)若點(diǎn) P 與點(diǎn) Q 重合點(diǎn) E x 軸上,點(diǎn) F 在拋物線(xiàn)上,問(wèn)是否存在以 A,PE,F 為頂 點(diǎn)的平行四邊形?若存在,直接寫(xiě)出點(diǎn) F 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案